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Resumen

Mínimos cuadrados parciales (PLS) es una familia de técnicas de reducción de dimensional-
idad formuladas en el contexto de problemas de regresión, que aprovechan las dependencias
lineales entre las variables predictoras y las variables a predecir. En concreto, en PLS, los
componentes se determinan proyectando en direcciones a lo largo de las cuales se maximiza
la covarianza cruzada entre proyecciones dentro de cada uno de los espacios correspondientes
a ambos grupos de variables. De este modo, PLS combina el criterio de optimización del
análisis de componentes principales (PCA), que consiste en maximizar la varianza a lo largo
de las direcciones en el espacio de las variables predictoras, y maximización de la correlación
entre tales proyecciones y combinaciones lineales de las variables a predecir. Estos com-
ponentes extraídos por PLS pueden ser utilizados para formular modelos más simples y, en
algunos casos, más precisos que los que se construyen a partir de las observaciones originales.

En este trabajo, se presenta una formulación general de PLS aplicado a problemas de
regresión con respuesta escalar, suponiendo únicamente que las variables predictoras son
elementos de un espacio de Hilbert. Además del producto interno estándar (euclídeo), este
espacio está dotado de un producto interno generalizado: el producto conjugado, definido
bajo la métrica inducida por la inversa del operador de covarianza de las variables predic-
toras. PLS es un proceso iterativo cuyo objetivo es identificar una secuencia de subespacios
anidados de dimensión creciente. Estos subespacios están generados por un conjunto de
elementos del espacio de Hilbert, que forman una base no necesariamente ortogonal. En
cada iteración, la base de PLS se amplía incorporando el elemento del espacio de Hilbert
que maximiza la covarianza con las variables a predecir, bajo ciertas restricciones. Depen-
diendo del tipo de restricciones consideradas, se pueden identificar diferentes bases de PLS
que generan el mismo subespacio. Si se impone ortogonalidad con los anteriores elementos
de la base, se obtiene la base ortogonal de PLS, que es la que se construye en el algoritmo
NIPALS. La base conjugada se obtiene imponiendo una relación de conjugación definida en
términos del producto interno generalizado. Esta base puede construirse utilizando el algo-
ritmo de gradientes conjugados. Tanto la base ortogonal como la conjugada generan una
secuencia de subespacios de Krylov definidos en términos del operator de covarianza de las
variables predictoras y la covarianza cruzada entre las variables predictoras y las variables a
predecir. Esto permite identificar una tercera base de PLS: la base de Krylov, que contiene
los elementos obtenidos al aplicar repetidamente el operador de covarianza de los regresores
sobre la covarianza cruzada. La generalidad de esta formulación permite aplicar PLS no solo
a datos multivariados y funcionales, que residen naturalmente en espacios euclídeos, sino
también a objetos matemáticos más complejos, como grafos o textos, estableciendo una cor-
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respondencia entre dichos objetos (por ejemplo, a través de kernel embeddings) y elementos
de un espacio de Hilbert.

A partir de la conexión con gradientes conjugados, es posible analizar la convergencia
de PLS a mínimos cuadrados ordinarios (OLS) en problemas de regresión multilineal con
predictores multivariantes y respuesta escalar. En concreto, es posible derivar un límite
superior para las diferencias entre los coeficientes de regresión calculados mediante PLS y
mediante OLS en función del número de componentes considerados en PLS. Este límite
depende únicamente de la distribución de los autovalores de la matriz de covarianza de las
variables predictoras. Cuando el número de componentes es igual al número de autovalores
distintos de esta matriz de covarianza, el coeficiente de regresión de PLS coincide con el
calculado usando OLS. En la práctica, si los valores propios están agrupados en clústeres,
PLS proporciona una aproximación precisa al coeficiente de regresión de OLS cuando el
número de componentes considerados es igual al número de clústeres presentes en el espectro
de la matriz de covarianza de los regresores.

Finalmente, se llevan a cabo una serie de experimentos en conjuntos de datos reales para
evaluar el rendimiento de PLS como método de reducción de dimensionalidad, especialmente
en comparación con PCA. Se consideran tanto conjuntos de datos multivariantes como fun-
cionales. En los problemas analizados, asumiendo un modelo de regresión lineal, PLS es
más eficaz que PCA cuando se utilizan pocos componentes. Las diferencias disminuyen a
medida que aumenta el número de componentes considerados. Asimismo, se han realizado
experimentos adicionales en los que se PCA y PLS se emplean como preprocesamiento pre-
vio a la aplicación de predictores más generales. En concreto, los primeros componentes que
resultan del análisis se usan como variables de entrada de regresores no lineales como, por
ejemplo, máquinas de vector soporte, redes neuronales y bosques aleatorios. Los resultados
de esta evaluación empírica muestran que PLS puede ser un método eficaz de reducción de
dimensionalidad en problemas del mundo real, incluso cuando las dependencias entre las
variables predictoras y las variables a predecir son no lineales.

Palabras clave

Análisis de datos funcionales, reducción de dimensionalidad, regresión, mínimos cuadrados
parciales
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Abstract

Partial least squares (PLS) is a family of dimensionality reduction techniques formulated in
the context of regression problems that take advantage of linear dependencies between the
predictor and target variables. Specifically, the PLS components are determined by project-
ing onto directions along which the cross-covariance between projections within the spaces
of the predictor and of the target variables is maximized. In doing so, PLS combines the
optimization criterion of principal component analysis (PCA), which consists in maximizing
the variance along directions within the space of predictor variables, and the maximization
of the correlation of these projections with linear combinations of the target variables. The
components extracted by PLS can then be utilized to formulate models that are simpler and,
in some cases, more accurate than those based on the original observations.

In this work, a general formulation of PLS is made for regresssion problems with scalar
response, assuming that the predictor variables are elements of a Hilbert space. Besides
the standard (Euclidean) inner product, this space is endowed with a generalized, conjugate
inner product defined under the metric induced by the inverse of the covariance operator of
the predictor variables. PLS is an iterative process whose goal is to identify a sequence of
subspaces of increasing dimension. These subspaces are the linear span of a set of elements
in the Hilbert space that form a basis, which is not necessarily orthogonal. At each iteration,
the PLS basis is enlarged by incorporating the element of the Hilbert space for which the
covariance with the target variable is maximized, subject to some constraints. Depending
on the types of constraints considered, different PLS bases that span the same subspace can
be identified. If orthogonality with the previous basis elements is enforced, one obtains the
orthogonal PLS basis computed in the NIPALS algorithm. The conjugate basis is obtained
by imposing a conjugacy relation defined in terms of the generalized inner product. This
basis can be constructed using the conjugate gradients algorithm. It is shown that both the
orthogonal and the conjugate bases span a sequence of Krylov subspaces defined in terms
of the covariances of the predictor variables and the covariances between the predictor and
target variables. This allows the identification of a third PLS basis: the Krylov basis, which
contains the elements obtained by repeatedly applying the regressor covariance operator onto
the cross-covariance. The generality of the formulation makes it possible to apply PLS not
only to multivariate and functional data, which naturally reside in Euclidean spaces, but
also to more complex mathematical objects, such as graphs or texts, by mapping them (e.g.,
through kernel embeddings) onto elements of a Hilbert space.

Based on the connection with conjugate gradients, it is possible to analyze the con-
vergence of PLS to ordinary least squares (OLS) in multilinear regression problems with
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multivariate predictors and scalar response. In particular, it is possible to derive an upper
bound on the difference between the PLS and OLS regression coefficients as a function of
the number of components considered in PLS. This bound depends only on the distribution
of the eigenvalues of the covariance matrix of the predictor variables. When the number of
components is equal to the number of distinct eigenvalues of this covariance matrix, the PLS
regression coefficient coincides with the one computed using OLS. In practice, if the eigenval-
ues are grouped in clusters, PLS provides an accurate approximation to the OLS regression
coefficient when the number of components considered equals the number of clusters in the
spectrum of the regressors’ covariance matrix.

Finally, a series of experiments on real-world datasets are carried out to assess the per-
formance of PLS as a dimensionality reduction method, especially in comparison with PCA.
Both multivariate and functional datasets are considered. In the problems analyzed, as-
suming a linear regression model, PLS is more effective than PCA when few components are
used, while the differences become smaller as the number of components considered increases.
Additional experiments are carried out in which PCA and PLS are used as a preprocessing
step in combination with more general predictors. Specifically, the first components that
result from the analysis are used as inputs of non-linear regressors, such as support vector
machines, neural networks and random forests. The results of this empirical evaluation show
that PLS can be an effective dimensionality reduction method in real-world problems even
when the dependencies between the predictor and the target variables are non-linear.

Keywords

Functional data analysis, dimensionality reduction, regression, partial least squares.
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Chapter 1

Introduction

Partial least squares (PLS) is a family of dimensionality reduction methods introduced in the
field of chemometrics (Noonan & Wold, 1977; Wold, Ruhe, Wold, & Dunn, 1984; Helland,
1990; Wold, Sjöström, & Eriksson, 2001; Abdi, 2010), where it is extensively used. Its success
in this discipline has led to its adoption in other scientific areas, such as medicine (Nguyen
& Rocke, 2002; Zhang, Han, & Deng, 2017), ecology (Burnett et al., 2021), oceanography
(Okwuashi, Ndehedehe, & Attai, 2020), and neuroscience (Krishnan, Williams, McIntosh,
& Abdi, 2011; Nakua et al., 2024), among others (Mehmood & Ahmed, 2016). PLS was
originally formulated as a dimensionality reduction method for multivariate regression, as-
suming a linear relation between the predictor and the response variables, in a sample of
independent observations (Cook, Forzani, & Liu, 2023). Since its introduction, it has been
extended to deal with classification problems (Ståhle & Wold, 1987; Barker & Rayens, 2003;
Moindjié, Dabo-Niang, & Preda, 2023), and with dependent observations (Wang, Gu, Wang,
& Saporta, 2019). Moreover, even if it was originally formulated in the context of linear re-
gression, it has been shown to be effective for dimensionality reduction also when nonlinear
relations are present (Cook & Forzani, 2021). PLS is most effective in problems when many
predictor variables contribute information about the response (Cook & Forzani, 2018, 2019).

One of the earliest sources for PLS is Noonan and Wold (1977). In that work, the
PLS components are defined computationally as the result of applying the NIPALS (non-
linear iterative partial least squares) algorithm. For scalar Y , the components identified by
NIPALS are the solution of a constrained optimization problem. This problem consists in
finding orthogonal linear combinations of the coordinates of X that maximize the covariance
with the response variable (de Jong, 1993). Utilizing this optimization problem, it is also
possible to show that the conjugate gradient method (Wold et al., 1984) and the Lanczos
bidiagonzalization algorithm (Eldén, 2004) can be used as alternatives to NIPALS for PLS
regression.

The extension of PLS to functional data was introduced in Preda and Saporta (2005).
In this work, NIPALS was adapted to consider the case in which the predictors are functions
that depend on a continuous parameter, such as time or space. Then, in Delaigle and Hall
(2012), functional PLS was presented as a constrained optimization problem, analogous to
multivariate PLS. More recent advances in the field have compared PLS and principal com-
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1. Introduction

ponent regression (PCR) with functional regressors (Febrero-Bande, Galeano, & González-
Manteiga, 2017), and presented a formulation of functional PLS based on the conjugate
gradient method (Babii, Carrasco, & Tsafack, 2024).

The main goal of this work is to provide a general formulation that provides a framework
to understand the relation of these variants of PLS. This formulation assumes only that
the regressor variables can be characterized as elements of a Hilbert space. Regression
with multivariate and functional predictors are particular cases of this formulation. In the
multivariate setting, the space of regressor variables is typically a subspace of RD, where D is
the number of regressors. In the functional case, the regressors are functions in a subspace of
L2, the space of square-integrable functions. Chapter 2 introduces PLS as an iterative process
whose goal is to identify a sequence of nested subspaces of increasing dimensions. In turn,
these subspaces are generated by bases obtained iteratively by PLS. At each iteration, PLS
includes in the basis the direction in the Hilbert space that maximizes the covariance with the
target, subject to some constraints. Different constraints lead to the construction of different
bases that span the same spaces. The orthogonal basis calculated in NIPALS is obtained
when orthogonality with respect to the usual inner product is imposed. The conjugate basis
built in the conjugate gradient method is the result of enforcing orthogonality with respect
to the conjugate inner product associated to the inverse of the covariance operator of the
regressors.

Chapter 3 focuses on the analysis of PLS in multiple regression. By applying general
properties of the conjugate gradient (Hestenes & Stiefel, 1952; Nocedal & Wright, 1999),
PLS can be proven to be equivalent to a polynomial fitting problem, as shown in Blazère,
Gamboa, and Loubes (2014). From this reformulation, it is possible to derive an upper
bound for the distance between the PLS and ordinary least squares (OLS) approximations
to the regression coefficient that depends only on the spectrum of the regressor covariance
operator. In light of this analysis, we explore the relation between these estimations in terms
of the characteristics of the distribution of eigenvalues. In particular, if these eigenvalues
are grouped into k tight clusters, PLS with k components provides a good approximation to
OLS.

Finally, in Chapter 4, the results of an empirical evaluation of PLS in real-world regression
problems are presented, analyzing both multilinear and functional problems. In this study,
PLS and PCA are employed for dimensionality reduction. The components extracted by
these methods are then used as inputs to both linear and non-linear predictors, such as
support vector machines, random forests, and neural networks. From the analysis of these
results, one observes that the predictive capacity of the first PLS components is larger than
that of the PCA components. This result is to be expected since PLS components not only
incorporate information about the variance of the regressor variables, as in PCA, but also
consider the correlation between the regressor and target variables.
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Chapter 2

Application of PLS to regression
problems

This chapter is devoted to the application of partial least squares to regression problems
with scalar response. To enable the unified treatment of multivariate and functional data,
the sole assumption is that the regressors are elements of a Hilbert space X . Specifically,
when multivariate regressors are considered, X typically is a subspace of RD. For functional
regressors, a common assumption is that X is a subspace of L2[0, T ], the space of square-
integrable real-valued functions defined in [0, T ]. In either case, the inner product in X
will be denoted as 〈·, ·〉. Besides random vectors and random functions, this formulation of
PLS is valid also when the predictor variables are more complex mathematical objects, such
as graph or texts. In such cases, to apply PLS, it is sufficient to define a correspondence
between these types of objects and elements of a Hilbert space using, for example, kernel
embeddings.

Given the predictor X ∈ X and the response variable Y in R, the linear regression model
is of the form

Y = a∗ + 〈β∗, X〉+ ε, (2.1)

where a∗ ∈ R is the intercept, β∗ ∈ X is the regression coefficient, and the noise term ε ∈ R
is a random variable such that E(ε|X) = 0. This implies E(ε) = 0 and E(Xε) = 0, which
means that the noise is uncorrelated with the predictor.

Assuming that a∗, β∗ are known, the optimal prediction for the response variable is the
regression function

Ŷ = E [Y |X] = a∗ + 〈β∗, X〉 .

Additionally, from (2.1) and applying E [Xε] = 0, one can obtain an equation for the
regression coefficient:

Cov (X,Y ) = Cov (X, a∗ + 〈β∗, X〉+ ε) = Cov (X, 〈β∗, X〉) = Kβ∗ =⇒ γ = Kβ∗, (2.2)

where K = Cov(X,X) and γ = Cov (X,Y ) are the regressor covariance operator and the
cross-covariance, respectively.
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2. Application of PLS to regression problems

Since K is a covariance operator, it is symmetric and positive definite. Furthermore,
we will assume that it is continuous. Under these circumstances, Mercer’s theorem (Mer-
cer & Forsyth, 1997; Ghojogh, Ghodsi, Karray, & Crowley, 2021), states that there is an
orthonormal basis of X consisting of eigenvectors (or eigenfunctions) of K.

However, if some of the eigenvalues are zero, the null space of the operator will be greater
than zero. As a result, one can find some β0 ∈ X , β0 6= 0 such that Kβ0 = 0. In this case,
(2.2) does not uniquely identify β∗, since K(β∗ + β0) = Kβ∗ + 0 = γ, while (β∗ + β0) 6= β∗.
This issue can be dealt with by restricting the search of β∗, to the space generated by
eigenvectors (or eigenfunctions) associated to non-zero eigenvalues.

In the cases considered in this work, the regressor variables are either random vectors or
random functions. If X is a random vector in X , X = (X1, . . . , XD)>, K ∈ RD×D is the co-
variance matrix, γ ∈ RD is the vector (Cov (X1Y ) , . . . ,Cov (XDY ))>, β∗ = (β∗

1 , . . . , β
∗
D)> ∈

RD, and the inner product is given by

〈β∗, X〉 =
D∑
d=1

β∗
dXd.

IfX is a random function in L2[0, T ], K is the covariance operator associated to the covariance
function k(s, t) = Cov(X(t), X(s)):

K : L2 [0, T ] −→ L2 [0, T ]

f −→ (Kf)(t) =
∫ T

0
k(t, s)f(s)ds,

γ is the function γ(t) = Cov (X(t)Y ), t ∈ [0, T ], and the inner product is given by

〈β∗, X〉 =
∫ T

0
β∗(t)X(t)dt. (2.3)

More details on the properties of these quantities in the functional case can be found in Preda
and Saporta (2005). Additionally, a summary of the described quantities in both cases is
included in Table 2.1.

Multivariate Functional

X RD L2[0, T ]
〈a, b〉 a>b

∫ T
0 a(s)b(s)ds

K Cov(XX>) Kf(t) =
∫ T

0 k(s, t)f(s)ds
γ Cov(XY ) γ(t) = Cov(X(t), Y )

Table 2.1: Multivariate and functional notation

Another aspect to keep in mind when functional regressors are considered, is that each
element in L2 is not a unique function, but an equivalence class of functions: Two functions
in L2 are equivalent if they differ only in a zero-measure set. In particular, due to the integral
in (2.3), changes to β∗ in a zero-measure set do not alter the result of the inner product.
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Note that, in most cases, functional data is observed in a grid ofM points s = (s1, . . . , sM).
We will assume that the grid is fine enough for the functional characteristics of X to be ap-
parent. By evaluating in the grid, one gets a vector X(s) = (X(s1), X(s2), . . . , X(sM))>.
Moreover, if the coefficient is discretized in the same grid, the inner product is calculated as

〈β∗, X〉 =
∫ T

0
β∗(s)X(s)ds =

M∑
m=1

amβ
∗(sm)X(sm) = X(s)>Aβ∗(s),

where A = diag(a1, . . . , aM) contains the integration weights. Furthermore, since X is usu-
ally assumed to be smooth, the variables in X(s) are not independent, and collinearity issues
can arise. As a result, considering the multivariate regression problem on the discretized data
can be troublesome, and the functional nature of the data must be taken into account.

Without loss of generality, in what follows, we assume that both the predictor and the
response variables are centered with the mean, which implies that a∗ = 0. Under this
assumption, the regression model becomes

Y = 〈β∗, X〉+ ε,

with E [X] = E [Y ] = 0, and E [ε|X] = 0.
One approach to compute β∗ is by applying dimensionality reduction techniques. These

methods consider projections of the original data onto a low-dimensionality space. As a
result, they can improve computational efficiency, reduce the noise in the input data, and
lead to more interpretable models. Dimensionality reduction is particularly useful to ad-
dress collinearity issues, making it an essential tool in the functional setting. Additionally,
when dealing with functional data the covariance operator K is not invertible, as zero is
an accumulation point of its eigenvalues (Cuevas, 2014), complicating the direct estimation
of β∗.

The projection onto low dimensionality spaces could be performed by using a standard
basis (e.g., polynomial or Fourier basis). However, there is no guarantee that the projections
onto those bases will preserve the relevant information. To retain the meaningful aspects of
the original data, a finite basis U = {u1, . . . , uL}, u` ∈ X , and L ≤ D, the dimensionality of
X , can be defined following some criterion. For instance, maximizing some measure that is
expected to be relevant for prediction. Then, a simplified regression model can be considered:
Y = ∑L

`=1 〈X, u`〉 β` + εL, where we seek to predict Y based only on the projections of the
original data onto the subspace spanned by this basis. Note that this restricted model
is equivalent to assuming that the regression coefficient must be contained in the space
generated by the basis. Therefore, the reconstruction of Y using the projections onto U can
be defined as

Y (U) =
L∑
`=1
〈X, u`〉 β` =

〈
X, β(U)

〉
, β(U) =

L∑
`=1

u`β`, β(U) ∈ span {u1, . . . , uL} . (2.4)

It is worth noting that, with this formulation, the previous expressions hold both in the
multivariate, and the functional setting, using the correspondences detailed in Table 2.1. In
the remaining of this chapter, we will utilize this notation extensively, to introduce PLS both
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2. Application of PLS to regression problems

for multivariate and functional regressors. As a first step, in the next section, we describe
principal component analysis, which will be used as a reference point in the discussion of
PLS that follows.

2.1 Principal component regression

Principal component analysis (PCA) is a widely-used dimensionality reduction method in
multivariate analysis (e.g. Abdi & Williams, 2010). Moreover, it has been extensively
applied in functional data analysis (Cardot, Ferraty, & Sarda, 1999; Hall & Horowitz, 2007;
Ramsay & Silverman, 2013). The principal component basis {ψ}`≥1 is defined in terms of
the solutions of the eigenvalue equation

Kψ` = λ`ψ`, ` ≥ 1,

subject to 〈ψi, ψj〉 = δij, with i, j ≥ 1, and λ1 ≥ λ2 ≥ . . . ≥ 0.
Equivalently, the elements of the basis can be computed iteratively by identifying a

sequence of orthogonal directions along which the variance is maximized. Specifically, the
`-th element in the basis can be obtained by solving the following optimization problem

ψ` = argmax
ψ∈X

Var (〈ψ,X〉) subject to 〈ψ, ψ〉 = 1;

〈ψ, ψi〉 = 0 i = 1, . . . , `− 1.

In principal component regression (PCR), the regression coefficient is represented as an
expansion in the PCA basis

β∗ =
∑
`≥1

b
(PCR)
` ψ`, b

(PCR)
` = 1

λ`
〈ψ`, γ〉 . (2.5)

Therefore, a natural approximation of β∗ can be obtained by truncating this series. If
only the first L components are taken into account, we obtain the approximation

β
(PCR)
L =

L∑
`=0

b
(PCR)
` ψ`. (2.6)

Thus, by rewriting (2.4) for the particular case of the basis composed of the first L
principal components, we obtain

Y
(PCR)
L =

〈
β

(PCR)
L , X

〉
=

L∑
`=1

b
(PCR)
j 〈ψ`, X〉 . (2.7)

Note that the PCA basis is defined solely in terms of the covariance structure of X,
without taking into account the relation between the predictor and the target variables.
Therefore, the first L elements of the PCA basis, which capture the largest part of the
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2.2. Partial least squares

variance of X, need not be the ones that have the largest predictive capacity. A possible
way to address this shortcoming is to include in the linear model the principal components
whose correlation with the dependent variable is largest Aguilera, Ocaña, and Valderrama
(1997); Febrero-Bande et al. (2017). As an alternative, the components can be identified
by optimizing a combination of the variance within the space of predictor variables and the
correlation between predictor and target variables. This is the strategy adopted in partial
least squares (PLS), which is described in the next section.

2.2 Partial least squares

The goal of partial least squares (PLS) is to identify directions along which the covariance
between X and Y is maximized. As discussed in Rosipal and Krämer (2005), the PLS
maximization criteria can be better understood by rewriting the square of the covariance in
terms of the square of the correlation and the variances of each of the variables

Cov2 (〈φ,X〉, Y ) = Var (〈φ,X〉) Corr2 (〈φ,X〉, Y ) Var (Y ) .

From this expansion, it is apparent that in PLS one attempts to simultaneously maximize
the variance captured by the projection (as in PCA) and the correlation with the target
variable. Therefore, the PLS basis not only reflects the covariance structure of X, but also
considers the predictive capacity of the components identified.

A PLS basis is built iteratively: The first element in a PLS basis is such that the covari-
ance between the projection of X along the corresponding direction and Y is maximized.
The `-th element in the basis is obtained by maximizing the covariance of the projection of
X along the corresponding direction and Y − Y (PLS)

`−1 . Following the same conventions as in
PCR, Y (PLS)

`−1 represents the approximation of the target variable Y based on the projections
onto the first `− 1 basis elements identified.

However, different variants of PLS can be found in the literature (see e.g., de Jong
(1993), Wegelin (2000), and Ergon (2009)). In the scalar response setting, these variants
are equivalent as they all can be proved to be equivalent to formulating an optimization
problem restricted to a sequence of Krylov subspaces of increasing order, which we will
describe in Section 2.2.2. The main differences between these formulations reside in the
restrictions placed on the basis. The orthogonal basis, described in Section 2.2.1, is obtained
by enforcing pair-wise orthogonality of the basis elements with respect to the inner product
of the Hilbert space X . The conjugate basis, introduced in Section 2.2.3, is obtained if one
enforces orthogonality with respect to the generalized (conjugate) inner product defined in
terms of the inverse of the covariance operator of the regressor variables.

2.2.1 The orthogonal PLS basis

In this section, the PLS basis of pair-wise orthogonal elements is presented, and its proper-
ties are explored. As discussed earlier, the PLS components are optimized by maximizing
the covariance of a linear combination of the regressor variables and the target variable.
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2. Application of PLS to regression problems

Therefore, to obtain a PLS basis with L elements, one can consider the following sequence
of optimization problems:

φ` = argmax
φ∈X

Cov
(
〈X,φ〉 , Y − Y (φ)

`−1

)
subject to 〈φ, φ〉 = 1, (2.8)

for ` = 1, . . . , L; where Y (φ)
`−1 is the optimal prediction of Y from the projections of X onto

the first `− 1 elements of the basis according to the least squares criterion. In terms of the
elements of this basis, the optimal prediction is

Y
(φ)
` =

∑̀
i=1

b
(φ,`)
i 〈X,φi〉 , (2.9)

where the coefficients {b(φ,`)
i }`i=1 minimize the expected value of

(
Y − Y (φ)

`−1

)2
:

(b(φ,`)
1 , . . . , b

(φ,`)
` ) = argmin

(b1,...,b`)∈R`

E

(Y − ∑̀
i=1

bi 〈X,φi〉
)2 . (2.10)

The iterative process halts when no additional information can be extracted from the
covariance. The maximum number of basis elements Lmax is defined by the following condi-
tions:

max
φ∈X

Cov
(
〈X,φ〉 , Y − Y (φ)

`

)
6= 0, ` < Lmax and max

φ∈X
Cov

(
〈X,φ`〉 , Y − Y (φ)

Lmax

)
= 0.
(2.11)

In the following, we will always assume that L ≤ Lmax. With this consideration in mind,
we can seek an expression for the elements of the basis defined by (2.8).
Proposition 2.2.1. The solution of the optimization problem (2.8) is

φ` = 1
λ(`)

(
γ −

`−1∑
i=1

b
(φ,`−1)
i Kφi

)
, (2.12)

where λ(`) is a normalization constant and b(φ,`−1)
i are defined in (2.10).

Proof. The quantity maximized in (2.8) can be rewritten as

Cov
(
〈X,φ〉 , Y − Y (φ)

`−1

)
= E (Y 〈X,φ〉)− E

(
〈X,φ〉Y (φ)

`−1

)
=

= 〈E(XY ), φ〉 − E
(
〈X,φ〉

`−1∑
i=1

b
(φ,`−1)
i 〈X,φi〉

)
=

= 〈γ, φ〉 −
`−1∑
i=1

b
(φ,`−1)
i 〈φ,Kφi〉 .

To find the element φ ∈ X that maximizes this quantity, we consider the Lagrangian:

L(φ) = 〈γ, φ〉 −
`−1∑
i=1

b
(φ,`−1)
i 〈φ,Kφi〉 − λ(〈φ, φ〉 − 1).

8



2.2. Partial least squares

Finally, the maximum is obtained by finding the zeroes of the derivative:

∂L
∂φ

= γ −
`−1∑
i=1

b
(φ,`−1)
i Kφi − λφ = 0 =⇒ φ` = 1

λ(`)

(
γ −

`−1∑
i=1

b
(φ,`−1)
i Kφi

)
,

where λ(`) is the normalization constant, and can be calculated as

λ(`) =
∥∥∥∥∥γ −

`−1∑
i=1

b
(φ,`−1)
i Kφi

∥∥∥∥∥
2

,

where ‖ · ‖ is the norm induced by the inner product of X .

Even though in the formulation of PLS given by (2.8) an orthogonality constrain is
not considered explicitly, the following proposition shows how this constraint is implicitly
enforced. As evidenced in the proof, the orthogonality is a result of the choice of the nor-
malization, along with the requirements that the coefficients in (2.10) satisfy a least squares
problem, and that the optimal prediction based on the components identified in previous
steps is subtracted from the target variable.

Proposition 2.2.2. The basis functions {φ`}L`=1 are pair-wise orthogonal.

Proof. To simplify the notation in this proof, consider the following definitions:

J`(φ) = Cov
(
〈X,φ〉 , Y − Y (φ)

`−1

)
and F`−1 = span {φ1, . . . , φ`−1} .

Let us recall that the expected value defines an inner product as 〈A,B〉E = E(AB),
where A,B are scalar random variables. With this property in mind, we will prove that
φ` is orthogonal to the previous components.

By the properties of the least squares fit of (2.10), Y − Y
(φ)
`−1 is orthogonal to

span {〈X,φ1〉 , . . . , 〈X,φ`−1〉} with respect to 〈·, ·〉E. Therefore, J`(φ) = 0 for all φ ∈ F`−1.
The space of predictor variables admits the decomposition

X = F`−1 ⊕ (F`−1)⊥ ,

where F⊥
`−1 is the orthogonal complement of F`−1.

Thus, the solution of the optimization problem in the `-th iteration can be written
as φ` = φ

‖
` + φ⊥

` , where φ‖
` ∈ F`−1 and φ⊥

` ∈ (F`−1)⊥. Due to the orthogonality of the
decomposition, and since J` is a linear functional, one has

〈φ, φ〉 =
〈
φ

‖
` , φ

‖
`

〉
+
〈
φ⊥
` , φ

⊥
`

〉
, and J`(φ`) = J`(φ⊥

` ) + J`(φ‖
`) = J`(φ⊥

` ).

Note that the restriction in (2.11) implies J`(φ⊥
` ) = J`(φ`) 6= 0 and, therefore, φ⊥

` 6= 0
and ‖φ⊥

` ‖ 6= 0. Furthermore, it is possible to show that J`(φ`) > 0 by contradiction. If

9



2. Application of PLS to regression problems

J`(φ`) < 0, then J`(−φ`) = −J`(φ`) > 0 > J`(φ`) and, thus, φ` does not maximize J`.
Therefore, necessarily, J`(φ`) > 0.

Using all these properties, we can prove that φ‖
` = 0. We proceed by contradiction,

assuming that φ‖
` 6= 0. Under that hypothesis, we can find g 6= φ` such that J`(g) >

J`(φ`):

g = ‖φ
⊥
` ‖2 + ‖φ‖

`‖2

‖φ⊥
` ‖2 φ⊥

` =⇒ J`(g) = ‖φ
⊥
` ‖2 + ‖φ‖

`‖2

‖φ⊥
` ‖2 J`(φ`) > J`(φ`),

Therefore, necessarily, φ‖
` = 0, which implies that φ` is perpendicular to all the

previous basis elements.

Remark. Since this basis is orthogonal, the optimization problem in (2.8) is equivalent to
the following formulation, which includes explicitly the orthogonality constraints, in spite of
the fact that they are redundant:

φ` = argmax
φ∈X

Cov
(
〈φ,X〉 , Y − Y (φ)

`−1

)
subject to 〈φ, φ〉 = 1;

〈φ, φi〉 = 0 i = 1, . . . , `− 1,

The importance of the expression (2.12) is that it can be used to show that the subspace
generated by the orthogonal basis is a Krylov space. A Krylov subspace is defined as follows:

Definition 1. The order L Krylov space generated by an operator A : X → X and an
element b ∈ X is defined as

KryL(A, b) = span
{
b, Ab, . . . AL−1b

}
.

We can now formally prove that the space generated by the basis functions corresponds
to the Krylov subspace.

Proposition 2.2.3. The basis {φ`}L`=1 spans the Krylov subspace KryL(K, γ), where K is
the covariance operator of the regressors and γ is the cross-covariance.

Proof. This property can be proved by induction. If L = 1,

φ1 ∝ γ and Kry1(K, γ) = span {γ} =⇒ span {φ1} = span {γ} = Kry1(K, γ).

Then, we can assume that the property holds for ` ≤ k − 1. Therefore, due to the
properties of the Krylov subspaces,

φ1, . . . , φk−1 ∈ Kryk−1(K, γ) =⇒ Kφ1, . . . ,Kφk−1 ∈ Kryk(K, γ).

From (2.12), φk is a linear combination of these elements, and γ ∈ Kry`(K, γ) for all
` ≥ 1. Therefore, necessarily φk ∈ Kryk(K, γ), and span {φ1, . . . , φk} ⊂ Kryk(K, γ). Fi-
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2.2. Partial least squares

nally, since the basis functions are pair-wise orthogonal, the dimension of span {φ1, . . . , φk}
is k. As a result, the previous inclusion must be an equality.

To conclude the exploration of this first form of PLS, we introduce the PLS approximation
of β∗, which we will denote β(φ)

L . This approximation appears naturally by rewriting the
approximation of Y based on the PLS basis in (2.9) so that we obtain an expression analogous
to (2.4).

Y
(φ)
L =

L∑
`=1

b
(φ,L)
` 〈X,φ`〉 =

〈
X,

L∑
`=1

b
(φ,L)
` φ`

〉
=
〈
X, β

(φ)
L

〉
, β

(φ)
L =

L∑
`=1

b
(φ,L)
` φ`.

This expression also shows that β(φ)
L is an element of the Krylov subspace generated by the

PLS basis. However, note that the coefficients of β(φ)
L are different for different values of L.

That is to say, for example, b(φ,1)
1 is not necessarily equal to b(φ,2)

1 . This is a major drawback
of this basis, since the PLS estimations cannot be obtained by truncating expansion on a
basis with more components, unlike in PCR (see (2.5) and (2.6)). In Section 2.2.3, we will
introduce the conjugate PLS basis, which does fulfill that property.

2.2.2 PLS as a constrained least squares problem

In this section, we explore a different interpretation of PLS. We forego the explicit definition
of the basis, and define the PLS approximation as the solution of a least squares problem
constrained to a Krylov subspace. With this goal in mind, we manipulate the optimization
problem formulated in (2.10) to obtain a characterization of the PLS approximation to β∗

as the result of an optimization problem:

min
(b1,...,b`)∈R`

E

(Y − ∑̀
i=1

bi 〈X,φi〉
)2 = min

(b1,...,b`)∈R`
E

(Y − 〈X,∑̀
i=1

biφi

〉)2 =

= min
β∈Kry`(K, γ)

E
[
(Y − 〈X, β〉)2

]
,

where in the last step we have used that the basis obtained spans the Krylov space of order
L (Proposition 2.2.3). Therefore, one can define the PLS approximation of β∗ as

β
(PLS)
L = argmin

β∈KryL(K, γ)
E
[
(Y − 〈X, β〉)2

]
= β

(φ)
L =

L∑
`=1

b
(φ,L)
` φ`. (2.13)

Note that we have dropped the dependency on the particular PLS basis defined in Propo-
sition 2.2.1. Moreover, we can also define the PLS approximation of Y without specifying
the basis as

Y
(PLS)
L =

〈
X, β

(PLS)
L

〉
.

Additionally, the least squares approximation can also be interpreted as result of min-
imizing distance to β∗, while staying in the Krylov subspace, if we consider the distance
defined by the K-product. This product is defined as

〈u, v〉K = 〈u,Kv〉 , u, v ∈ X .

11



2. Application of PLS to regression problems

As usual, from this inner product, a norm: ‖u‖K = 〈u, u〉K (K-norm), and thus a distance
are derived. As the following results illustrate, this inner product has some desirable prop-
erties. Moreover, in Chapter 3, the properties of the sample version of this inner product
are explored in further detail.

Proposition 2.2.4. The PLS approximation of β∗ minimizes the K-norm of its difference
with β∗. That is to say,

β
(PLS)
L = argmin

β∈KryL(K, γ)
〈β − β∗, β − β∗〉K .

Proof. This is a consequence of manipulating (2.13):

β
(PLS)
L = argmin

β∈KryL(K, γ)
E
[
(Y − 〈X, β〉)2

]
=

= argmin
β∈KryL(K, γ)

E
[
Y 2
]
− E [2Y 〈X, β〉] + E

[
〈X, β〉2

]
=

= argmin
β∈KryL(K, γ)

−2 〈γ, β〉+ 〈β, β〉K =

= argmin
β∈KryL(K, γ)

−2 〈Kβ∗, β〉+ 〈β, β〉K + 〈β∗, β∗〉K =

= argmin
β∈KryL(K, γ)

〈β − β∗, β − β∗〉K ,

where we have applied that Kβ∗ = γ.

Since the PLS approximation can be obtained as the least squares approximation re-
stricted to the Krylov subspace, β(PLS)

L can also be expressed in terms of projections onto
the Krylov subspace. To obtain this characterization, we begin by defining and enumerating
the properties of the K-conjugate projection onto the Krylov subspace.

Definition 2. The K-conjugate projection onto KryL(K, γ) is the linear surjective trans-
formation π(L) : X → KryL(K, γ) that is idempotent and self-adjoint with respect to the K
inner product. That is to say, it fulfills

π(L)
(
π(L)(u)

)
= π(L)(u) and

〈
π(L)(u), v

〉
K

=
〈
u, π(L)(v)

〉
K
,

for any u, v ∈ X .

Proposition 2.2.5. The K-conjugate projection fulfills

u− π(L)(u) ∈ (KryL(K, γ))⊥K ,

for any u ∈ X , where

(KryL(K, γ))⊥K = {v ∈ X : 〈v, s〉K = 0, ∀s ∈ KryL(K, γ)} .

Additionally, for any u ∈ KryL(K, γ), π(L)(u) = u.

12



2.2. Partial least squares

Proof. This is a consequence of the idempotency and self-adjoint properties. For all
v ∈ KryL(K, γ),

〈
u− π(L)(u), v

〉
K

=
〈
u− π(L)(u), π(L)(w)

〉
K

=
〈(
π(L) −

(
π(L)

)2
)

(u), w
〉

K
= 0,

where w ∈ X is such that π(L)(w) = v. The existence of w is given by the surjective
property, while the second step is a consequence of the self-adjoint property, and the
third is due to the idempotency.

The last remark in the proposition is a consequence of the previous property. If
u ∈ KryL(K, γ), u− π(L)(u) ∈ KryL(K, γ). However, we have proved that u− π(L)(u) ∈
(KryL(K, γ))⊥K . Therefore, u−π(L)(u) must be in the intersection, which only contains
zero. As a result, u = π(L)(u).

Using the projection operator, the PLS approximation of β∗ can be expressed as its
K-conjugate projection onto the Krylov subspace.

Proposition 2.2.6. The PLS estimation of β∗ with L components can be expressed as

β
(PLS)
L = π(L)(β∗),

where π(L) is the K-conjugate projection onto the Krylov subspace, as defined in Definition 2.

Proof. The starting point is the result of Proposition 2.2.4. We start by expanding the
expression to minimize, adding and subtracting π(L)β∗:

〈β − β∗, β − β∗〉K =
〈(
β − π(L)β∗

)
+
(
π(L)β∗ − β∗

)
,
(
β − π(L)β∗

)
+
(
π(L)β∗ − β∗

)〉
K

=

=
〈
β − π(L)β∗, β − π(L)β∗

〉
K

+ 2
〈
β − π(L)β∗, π(L)β∗ − β∗

〉
K

+
〈
π(L)β∗ − β∗, π(L)β∗ − β∗

〉
K
.

We can now consider the middle term. Since β ∈ KryL(K, γ), and π(L)(β∗) ∈
KryL(K, γ), β − π(L)β∗ ∈ KryL(K, γ). However, from Proposition 2.2.5, β∗ − π(L)β∗ ∈
(KryL(K, γ))⊥K . Therefore, this conjugate product is zero. Moreover, the third term
obtained does not depend on β. Therefore, the optimization problem can be simplified
to

β
(PLS)
L = argmin

β∈KryL(K, γ)

〈
β − π(L)β∗, β − π(L)β∗

〉
K
.

Now, since π(L)β∗ ∈ KryL(K, γ), this quantity is zero when β = π(L)β∗. Due to the
positive-definiteness of the conjugate product, this is the optimum value.
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2. Application of PLS to regression problems

The characterization of PLS as a constrained least squares approximation can be utilized
to compare PLS with other regression methods. In particular, to close this section, we
can show that, if PCA regression provides a perfect prediction, PLS also obtains a perfect
prediction, needing at most the same number of components as PCA and, in some cases,
less.

Theorem 2.2.1. Assume that the PCA prediction with L components is equal to the target
variable, except for some error e independent of the regression. That is to say:

Y = Y
(PCR)
L + e,

where E(eX) = 0. Then, β(PLS)
L−M = β

(PCR)
L and, thus, Y = Y

(PLS)
L−M + e, where M is the number

of repeated eigenvalues among the first L eigenvalues of the covariance operator.

Proof. The cross covariance γ = E(XY ) can be expressed as

γ = E(XY ) = E(XY (PCR)
L ) + E(Xe) = E(XY (PCR)

L ).

Now we can apply (2.7):

γ = E
(
X

〈
X,

L∑
`=1

b
(PCR)
` ψ`

〉)
= K

(
L∑
`=1

b
(PCR)
` ψ`

)
=

L∑
`=1

λ`b
(PCR)
` ψ`,

where λ1 ≥ λ2 ≥ · · · ≥ λL are the eigenvalues of K, and {ψ`}L`=1 are the corresponding
eigenvectors.

In this section we saw that PLS can be characterized as a least squares minimization
in a Kyrlov subspace generated by the covariance operator K and the cross covariance.
Since the cross covariance is a combination of the eigenvectors of the covariance operator,
the generated Krylov space is

KryL(K, γ) = span
{

L∑
`=1

λ`b
(PCR)
` ψ`, . . . ,

L∑
`=1

λL` b
(PCR)
` ψ`

}
.

Now, to show that PLS and PCR obtain the same coefficients, we need only show that
the result obtained by PCR is contained in the Krylov subspace. That is to say, that

L∑
`=1

b
(PCR)
` ψ` = a1

(
L∑
`=1

λ`b
(PCR)
` ψ`

)
+ · · ·+ aL

(
L∑
`=1

λL` b
(PCR)
` ψ`

)
=

=
L∑
`=1

(
L∑
i=1

aiλ
i
`

)
b

(PCR)
` ψ`,

(2.14)
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2.2. Partial least squares

for some coefficients {a`}L`=1. Therefore, it suffices to show that
λ1 . . . λL1
... . . . ...
λL . . . λLL


︸ ︷︷ ︸

V


a1
...
aL

 =


1
...
1

 . (2.15)

If λ1 6= λ2 6= . . . 6= λL, V is a Vandermonde matrix. Therefore, it is invertible, and
we can find a combination of coefficients that solves (2.14). If λi = λk, i 6= k, since
the independent term in all equations in (2.15) is the same, we can discard the i-th
equation, set the last coefficient of a to zero, and consider the system containing the
rest of the equations. This process can be repeated until all repeated eigenvalues have
been removed from V. Since, at each step we also discarded its last column, V will be
a square Vandermonde matrix, and we can invert it to find the values of the remaining
coefficients.

This process can be applied as many times as repeated eigenvalues. Therefore, the last
M coefficients of (a1, . . . , aL) are zero, where M is the number of repeated eigenvalues
among the first L eigenvalues. Therefore, β(PLS)

L will also be contained in the Krylov
space of dimension L−M , which implies that PLS will converge after L−M iterations.

As shown in this section, the K-product appears naturally when attempting to express
the least squares solution as a projection onto the underlying space. Therefore, it is natural
to consider the construction of a PLS basis where the basis elements are pair-wise orthogonal
with respect to this inner product. This basis is the focus of the next chapter.

2.2.3 The conjugate PLS basis

In the previous sections, PLS was introduced as an iterative process that identifies a sequence
of subspaces of increasing dimension in a Hilbert space. Naturally, these subspaces can be
characterized by the sequence of elements that generate them, and, in particular, by a
basis of the space, to which an element is added each iteration. Further, we showed that
these spaces are Krylov spaces generated by the covariance of the regressors and the cross
covariance, defined as

KryL(K, γ) = span
{
γ,Kγ, . . . ,KL−1γ

}
.

Therefore, a natural basis to consider is {γ,Kγ, . . . ,KL−1γ}. We will refere to this basis
as the Krylov basis. In principle, this set of elements need not be linearly independent.
However, as long as L is less than the maximum dimension of the Krylov subspace, they
are linearly independent. The maximum dimension of a Krylov subspace generated by K
and γ, dmax, is the smallest value that fulfills Kryr(K, γ) = Krydmax(K, γ) for all r > dmax.
Consider the Krylov subspace generated by the first L elements. As long as L < dmax,
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2. Application of PLS to regression problems

KLγ must be linearly independent of the previous L elements. We can prove this fact by
contradiction. If KLγ can be expressed as a linear combination of the previous L elements,
KLγ = ∑L

`=1 a`K`−1γ, for some coefficients {a`}L`=1. However, then:

KryL+1(K, γ) = span
{
γ,Kγ, . . . ,KL−1γ,KLγ

}
= span

{
γ,Kγ, . . . ,KL−1γ,

L∑
`=1

a`K`−1γ

}

= span
{
γ,Kγ, . . . ,KL−1γ

}
= KryL+1(K, γ),

and thus L fulfills the condition for the maximum dimension. Therefore, dmax ≤ L, which
concludes this proof and shows that the Krylov basis is indeed a basis as long as L < dmax.

In the literature, this basis is utilized due to its convenience to prove theoretical properties
of the PLS method (Delaigle & Hall, 2012). However, the Krylov basis tends to become
almost linearly dependent, as repeated exponentiation of the operator scales the eigenvectors
exponentially depending on their eigenvalues. As a result, it is not usually employed in
numerical algorithms.

Another alternative is the orthogonal basis introduced in Section 2.2.1. However, as
we already discussed, the PLS approximation with L components cannot be calculated by
truncating its expansion on this basis, as the coefficients depend on dimension of the basis.

In this section, we introduce yet another basis, in which the coefficients do not depend
on the total number of components considered: the conjugate basis. The components of this
basis are not orthogonal with respect to the usual inner product, instead they are orthogonal
with respect to the K-product introduced in the last section. This basis can be defined by
adding conjugacy constraints to (2.8) as follows

ϕ` = argmax
ϕ∈X

Cov
(
〈ϕ,X〉 , Y − Y (ϕ)

`−1

)
subject to 〈ϕ, ϕ〉 = 1;

〈ϕ, ϕi〉K = 0 i = 1, . . . , `− 1,
(2.16)

where Y (ϕ)
L is defined as

Y
(ϕ)
` =

∑̀
i=1

b
(ϕ,`)
i 〈ϕi, X〉 ,

and {b(ϕ,`)
i }`i=1 are fitted by least squares:

(b(ϕ,`)
1 , . . . , b

(ϕ,`)
` ) = argmin

(b1,...,b`)∈R`

E

(Y − ∑̀
i=1

bi 〈X,ϕi〉
)2 . (2.17)

However, in this case, the function to optimize can be simplified due to the conjugacy
constraints.

Lemma 2.2.2. Under the conjugacy constraints in (2.16),

Cov
(
〈ϕ,X〉 , Y − Y (ϕ)

`−1

)
= Cov (〈ϕ,X〉 , Y ) .
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2.2. Partial least squares

Proof. This can be proved by expanding the LHS

Cov
(
〈ϕ,X〉 , Y − Y (ϕ)

`−1

)
= E

[
Y 〈ϕ,X〉 − Y (ϕ)

`−1 〈ϕ,X〉
]

=

= E [Y 〈ϕ,X〉]− E
[
Y

(ϕ)
`−1 〈ϕ,X〉

]
=

= E [Y 〈ϕ,X〉]−
`−1∑
i=1

b
(ϕ,`)
i E [〈ϕi, X〉 〈ϕ,X〉] =

= E [Y 〈ϕ,X〉]−
`−1∑
i=1

b
(ϕ,`)
i 〈ϕ, ϕi〉K =

= E [Y 〈ϕ,X〉] =
= Cov (〈ϕ,X〉 , Y ) .

As in the analysis of the orthogonal basis, we now seek to find an expression for the basis
functions.

Proposition 2.2.7. The solution of the optimization problem (2.16) is

ϕ` = 1
λ

(`)
0

(
γ −

`−1∑
i=1

λ
(`)
i Kϕi

)
, (2.18)

where {λ(`)
i }`−1

i=1 are constants determined by the conjugacy constraints and λ
(`)
0 is the nor-

malization constant.

Proof. Applying the simplification of Lemma 2.2.2, we obtain the Lagrangian

L(ϕ) = 〈ϕ, γ〉 −
`−1∑
i=1

λi(〈ϕ,Kϕi〉 − 1)− λ0(〈ϕ, ϕ〉 − 1).

To find the minimum, we seek the points at which the gradient is zero:

∂L
∂ϕ

= γ −
`−1∑
i=1

λiKϕi − λ0ϕ = 0 =⇒ ϕ` = 1
λ0

(
γ −

`−1∑
i=1

λiKϕi
)
.

As with the orthogonal basis, the space spanned by this basis is the Krylov subspace.
This is a consequence of expression (2.18) and the conjugacy constraints. Therefore, once
more, β(PLS)

L can be expressed in this basis as

β
(PLS)
L =

L∑
`=1

b
(ϕ,L)
` ϕ`.
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2. Application of PLS to regression problems

In this case, solving the optimization problem directly did not provide a closed expression
for the basis elements. In order to obtain the concrete values, it is required to find the values
of the multipliers {λ(`)

i }`i=1. To do so, it is possible to solve the following linear equation
system

〈ϕ`, ϕj〉K = 0 =⇒ 〈γ, ϕj〉K −
`−1∑
i=1

λ
(`)
i 〈Kϕi, ϕj〉K = 0, j = 1, . . . , `− 1.

In Section 2.3.2, the conjugate gradient method will be explored, which provides an
algorithm to calculate a conjugate basis of the Krylov space without explicitly solving these
equations. In the remainder of this section, we cover additional properties, which are applied
in the conjugate gradient method. Our first goal is to show that we can drop the number of
components in the superindex of the coefficients defined in (2.17).

Proposition 2.2.8. The coefficients of β(PLS)
L , the PLS approximation of β∗ in this basis,

do not depend on L, the dimension of the explored Krylov subspace. That is to say, we can
express the PLS approximation of β using this basis as:

β
(PLS)
L =

L∑
`=1

b
(ϕ)
` ϕ`, where b

(ϕ)
` =

〈
β

(PLS)
L , ϕi

〉
K

〈ϕi, ϕi〉K
. (2.19)

Proof. Let us consider the results of applying PLS with two different numbers of com-
ponents L and K. WLOG, we will assume that K > L. In principle, all we know is that
the PLS approximations are contained in the Krylov space. Thus, they can be expressed
as:

β
(ϕ)
L =

L∑
i=1

b
(ϕ,L)
i ϕi and β

(ϕ)
K =

K∑
i=1

b
(ϕ,K)
i ϕi.

Our goal now is to prove that b(ϕ,K)
i = b

(ϕ,L)
i for any i = 1, . . . , L. To begin, we notice

that the conjugancy of the basis provides a closed-form expression for these coefficients:

b
(ϕ,L)
i =

〈
β

(ϕ)
L , ϕi

〉
K

〈ϕi, ϕi〉K
and b

(ϕ,K)
i =

〈
β

(ϕ)
K , ϕi

〉
K

〈ϕi, ϕi〉K
. (2.20)

Therefore, the difference between the coefficients can be expressed as

b
(ϕ,K)
i − b(ϕ,L)

i =

〈
β

(ϕ)
K − β

(ϕ)
L , ϕi

〉
K

〈ϕi, ϕi〉K
. (2.21)

In order to show that this quantity is zero, notice that we can rewrite β
(ϕ)
L as a

projection of β(ϕ)
K in the following manner:

β
(ϕ)
L − π(L)(β(ϕ)

K ) = π(L)(β∗ − β(ϕ)
K ) = π(L)(β∗ − π(K)β∗) = 0, (2.22)

18



2.2. Partial least squares

where we have used the characterization of β(ϕ)
K as the K-orthogonal projection onto the

Krylov space and the last equality holds because

β∗ − π(K)β∗ ∈ (KryK(K, γ))⊥K ⊂ (KryL(K, γ))⊥K .

From (2.22) we know that β(ϕ)
L can be expressed as π(L)(β(ϕ)

K ). If we substitute this
into (2.21), we would obtain the expression β(ϕ)

K − π(L)β
(ϕ)
K as part of the inner product.

The result of this operation is K-orthogonal to the Krylov space of order L and, therefore,
to ϕi. As a result, the inner product in the numerator of (2.21) is zero and the coefficients
must be equal.

Finally, the expression for b(ϕ)
` in (2.19) is the result of dropping the L or K from the

formulas in (2.20).

Using this result, we can express the PLS approximation of Y as a series where we add
a new term for every PLS component added:

Y
(PLS)
L =

〈
X, β

(PLS)
L

〉
=

L∑
`=i

b
(ϕ)
` 〈X,ϕ`〉 = Y

(PLS)
L−1 + b

(ϕ)
L 〈X,ϕL〉 .

Additionally, by dropping the additional dependency of the coefficients on the total num-
ber of components, we obtain coefficients that have similar properties to those of PCR. This
last expression is comparable to the definition of Y (PCR)

L in (2.7).

However, Proposition 2.2.8 does not provide a way of calculating {b(ϕ)
` }L`=1. As described

at the beginning of this section, these coefficients are defined as the result of an L-dimensional
least squares fit. However, the problem can be greatly simplified. In particular, the following
proposition provides an explicit expression for each coefficient.

Proposition 2.2.9. The coefficients of the PLS estimation using the conjugate basis can be
calculated explicitly as

b
(ϕ)
` =

〈
γ −Kβ(ϕ)

`−1, ϕ`
〉

〈ϕ`, ϕ`〉K
= 〈γ, ϕ`〉
〈ϕ`, ϕ`〉K

.

Proof. Applying (2.10) to this basis, we obtain that

(b(ϕ)
1 , . . . , b

(ϕ)
` ) = argmin

(b1,...,b`)∈R`

E

(Y − ∑̀
i=1

bi 〈X,ϕi〉
)2 .

However, from Proposition 2.2.8, we know that all coefficients but the last are shared
with the previous approximation. Therefore, we can solve this problem incrementally,
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2. Application of PLS to regression problems

searching in a one-dimensional space at a time. To do so, we rewrite the problem as

b
(ϕ)
` = argmin

b`∈R
E
[(
Y − Y (ϕ)

`−1 − b` 〈X,ϕ`〉
)2
]

=

= argmin
b`∈R

(
E
[(
Y − Y (ϕ)

`−1

)2
]
− 2E

[
(Y − Y (ϕ)

`−1)b` 〈X,ϕ`〉
]

+ E
[
(b` 〈X,ϕ`〉)2

])
=

= argmin
b`∈R

(
−2b`

〈
E
[(
Y − Y (ϕ)

`−1

)
X
]
, ϕ`

〉
+ b2

` 〈ϕ`,Kϕ`〉
)
.

To find the solution of the optimization problem, it suffices to find the zeros of the
derivative. In this case, the only zero is

b
(ϕ)
` =

〈
E
[(
Y − Y (ϕ)

`−1

)
X
]
, ϕ`

〉
〈ϕ`, ϕ`〉K

=

=

〈
E
[(
Y −

〈
X, β

(ϕ)
`−1

〉)
X
]
, ϕ`

〉
〈ϕ`, ϕ`〉K

=

=

〈
γ −Kβ(ϕ)

`−1, ϕ`
〉

〈ϕ`, ϕ`〉K
.

(2.23)

However, we can still simplify this expression. In particular, the quantity
〈
Kβ(ϕ)

`−1, ϕ`
〉

is always zero: 〈
Kβ(ϕ)

`−1, ϕ`
〉

=
`−1∑
i=1

b
(ϕ)
i 〈Kϕi, ϕ`〉 = 0,

where the last step is true due to the conjugacy property. Substituting this result into
(2.23), we obtain

b
(ϕ)
` =

〈
γ −Kβ(ϕ)

`−1, ϕ`
〉

〈ϕ`, ϕ`〉K
= 〈γ, ϕ`〉
〈ϕ`, ϕ`〉K

−

〈
Kβ(ϕ)

`−1, ϕ`
〉

〈ϕ`, ϕ`〉K
= 〈γ, ϕ`〉
〈ϕ`, ϕ`〉K

.

This last proposition enables us to calculate the PLS approximations to β∗ iteratively,
calculating only two inner products for each iteration. However, the conjugate basis {ϕ`}L`=1
is needed for these calculations. This basis can be obtained in different ways. For once, it
could be derived by orthogonalizing any basis of the Krylov subspace with respect to the
K-inner product. However, a more efficient approach is provided by the conjugate gradient
method, described in Section 2.3.2.

The projections of X onto a conjugate PLS basis T` = 〈X,ϕ`〉 are typically called scores
(Rosipal & Krämer, 2005). As a result of the conjugacy of {ϕ`}L`=1, the scores are orthogonal.
Even though our focus so far has been on the projection directions that constitute the PLS
basis, many sources first introduce the components, and then present PLS regression as
linear regression between the components and the response variable (Wold et al., 2001; de
Jong, 1993). This is equivalent to the formulation in (2.10).
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2.2. Partial least squares

Once the components are known, they can be used to reconstruct the original data. The
loadings are defined with that goal in mind. Consider the model

X =
L∑
`=1

p`T` + ε,

where p` are the parameter to fit. We assume that E(Xε) = 0. Therefore, E(T`ε) = 0 for all
` = 1, . . . , L and we can obtain an expression for p`:

E(XTk) = E
(

L∑
`=1

p`T`Tk

)
+ E(εTk) =⇒ E(XTk) = pkE(TkTk) + 0 =⇒

=⇒ pk = 1
E(T 2

l )E(XTl).

With these loadings, the original data can be reconstructed from the scores as

XL =
L∑
`=1

p`T`.

Furthermore, the norm of this reconstruction is minimal, as the expression obtained for
{p`}L`=1 minimizes the following quantity:

min
p1,...,pk∈X

E

∥∥∥∥∥X −
L∑
`=1

p`T`

∥∥∥∥∥
2 =

min
p1,...,pk∈X

E (〈X,X〉)− 2
L∑
`=1

E (T` 〈X, p`〉) +
L∑
`=1
〈p`, p`〉E

(
T 2
`

)
=

E (〈X,X〉) + min
p1,...,pk∈X

L∑
`=1
〈p`, p`〉E

(
T 2
`

)
− 2

L∑
`=1
〈E (T`X) , p`〉 =

E (〈X,X〉) + min
p1,...,pk∈X

L∑
`=1
〈p`, p`〉E

(
T 2
`

)
− 2 〈E (T`X) , p`〉 ,

where we have used that the scores are uncorrelated. To continue, we can change the order
of the summation and the minimization:

L∑
`=1

min
p1,...,pk∈X

〈p`, p`〉E
(
T 2
`

)
− 〈2E (T`X) , p`〉 =

L∑
`=1

min
p1,...,pk∈X

〈p`, p`〉 −
〈

2E (T`X)
E (T 2

` ) , p`
〉
,

where we can see that the minimum is reached for the value of p` in (2.2.3).
During this analysis we have seen how PLS can be understood as an iterative process

that explores a Hilbert space, identifying a sequence of subspaces of increasing dimension.
Since these subspaces are generated by some basis, PLS can be understood as the process of
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2. Application of PLS to regression problems

obtaining this basis from the original data. Once the basis is known, the PLS components
can be easily calculated by projecting onto the direction of the basis elements. Furthermore,
different basis that span the same space can be obtained, depending on the constraints
enforced. Orthogonality with respect to the usual inner product yields the orthogonal basis,
while orthogonality with respect to the inner product induced by the covariance operator
produces the conjugate basis. Additionally, we also showed how the expansion of the PLS
approximation in the conjugate basis has the advantage of sharing the coefficients obtained
in previous iterations.

2.3 Numerical algorithms for PLS regression

In this section, two algorithms that can be utilized to perform PLS regression are described.
The first of them, NIPALS (Nonlinear Iterative Partial Least Squares) constructs an orthog-
onal base of the Krylov subspace, while calculating the PLS scores and loading. In contrast,
the conjugate gradient method exploits the properties of the conjugate basis of the Krylov
subspace to build directly the PLS approximation in each iteration.

2.3.1 NIPALS

NIPALS is an iterative algorithm that calculates the PLS scores, the loadings and an orthog-
onal basis of the Krylov subspace KryL(K, γ). One of the first versions of this algorithm can
be found in Noonan and Wold (1977), which has been the object of successive refinements
(Wegelin, 2000). After each iteration, the regressor X gets deflated (see line 7 of Algorithm
1). This step ensures that the next component is orthogonal to the previous ones. This
deflation can be understood as subtracting the information already present in the extracted
components.

Algorithm 1 NIPALS
Input: X, Y and L

Output: {φ`}L`=1, {T`}L`=1 and {p`}L`=1

1: X0 ← X

2: for ` = 1, . . . , L do
3: φ` ← 1

‖E(X`−1Y )‖E(X`−1Y ) . Basis
4: T` ← 〈φ`, X`−1〉 . Projection directions
5: K`−1f := E(X`−1 〈X`−1, f〉) . Deflated covariance operator
6: p` ← 1

〈φ`,K`−1φ`〉K`−1φ` . Loadings
7: X` ← X`−1 − T`p` . Deflate regressor
8: end for
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2.3. Numerical algorithms for PLS regression

In the remainder of this section, we show that the NIPALS calculates the orthogonal
basis obtained in Proposition 2.2.1, alongside the PLS scores and loadings. To get started,
the following proposition provides an alternate expression for the deflated regressor.
Proposition 2.3.1. An alternative expression for X` is

X` = X`−1 − T`E(X`−1T`)/E(T 2
` ).

Proof. We can apply the identities in the algorithm until we reach the desired expression:

X` = X`−1 − T`p` = X`−1 − T`
(

1
〈φ`,K`−1φ`〉

K`−1φ`

)
=

= X`−1 − T`
(

1
〈φ`,K`−1φ`〉

E(X`−1 〈X`−1, φ`〉)
)

=

= X`−1 − T`
(

1
E(T 2

` )E(X`−1T`)
)

=

= X`−1 − T`E(X`−1T`)/
(
E(T 2

` )
)
,

where we have used that

〈φ`,K`−1φ`〉 = 〈φ`,E(X` 〈X`−1, φ`〉)〉 = 〈φ`,E(X`T`)〉 =
= E(〈φ`, X`〉T`) = E(T 2

` ).

The following result shows that the deflation of NIPALS produces orthogonal scores.
Theorem 2.3.1. The scores {T`}L`=1 obtained by NIPALS are uncorrelated. That is to say,
E(TiTj) = 0 if 1 ≤ i, j ≤ L, i 6= j.

Proof. We proceed by induction. If L = 1, the statement is trivial. To complete the
proof, we will assume that the scores {T`}k−1

`=1 are orthogonal and prove that, then, the
scores {T`}k`=1 are orthogonal.

Therefore, we focus on Tk. For any 1 ≤ i < k we need to prove that E(TiTk) = 0.
Before starting, we note that our goal will be proven if E(TiXk−1) = 0 since

E(TiTk) = E(Ti 〈φk, Xk−1〉) = 〈φk,E(TiXk−1)〉 .

If i < k − 1, from line 7 of NIPALS,

E(TiXk−1) = E(TiXk−2 − TiTk−1pk−1) =
= E(TiXk−2)− E(TiTk−1pk−1) =
= E(TiXk−2) = · · · = E(TiXi).

Finally, either if i = k − 1, or following the previous steps, we can substitute the
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2. Application of PLS to regression problems

expression for Xi in Proposition 2.3.1,

E(TiXi) = E(TiXi−1 − TiTiE(Xi−1Ti)/E(T 2
i )) =

= E(TiXi−1)− E(TiTi)E(Xi−1Ti))/E(T 2
i ) =

= E(TiXi−1)− E(Xi−1Ti)) = 0.

The next result is a direct consequence of the deflation in NIPALS. These three claims
will be used extensively to prove the following theorems.

Lemma 2.3.2. The following equalities hold

1 . E(XiT`) = E(XjT`) if 0 ≤ j < i < ` ≤ L;
2 . 〈φi, pj〉 = 0 if 1 ≤ i < j ≤ L;
3 . 〈φi, pi〉 = 1 if 1 ≤ i ≤ L.

(2.24)

Proof. We prove them sequentially:

1. E(XiT`) = E(XjT`) if j < i < l.
It is a consequence of the deflation and the orthogonality of the PLS scores

E(XiT`) = E

Xj −
i∑

m=j+1
Tmpm

T` =

= E(XjTj)−
i∑

m=j+1
E(TmT`)pm =

= E(XjT`),

where the last step holds due to the orthogonality of the scores.

2. 〈φi, pj〉 = 0 if i < j.
It is a consequence of the definition of pj and the previous property.

〈φi, pj〉 = 〈φi,E(Xj−1 〈Xj−1, φj〉)〉 = 〈φi,E(Xj−1Tj)〉 = 〈φi,E(XiTj)〉 =
= E(〈φi, XiTj〉) = E(Tj 〈φi, Xi〉) = E(TjTi) = 0.

3. 〈φi, pi〉 = 1.
It is a direct consequence of the definition of pi in NIPALS.

〈φi, pi〉 = 1
〈φ`,K`−1φ`〉

〈φ`,K`−1φ`〉 = 1.
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2.3. Numerical algorithms for PLS regression

The following theorem shows that NIPALS explores Krylov spaces of increasing order.
This is the first step in showing that the basis produced is an orthogonal basis of the Krylov
space

Theorem 2.3.3. The loadings obtained by NIPALS fulfill p` ∈ Kry`(K,Kγ), while the basis
elements fulfill φ` ∈ Kry`(K, γ).

Proof. This proof is performed by induction.
In the first iteration of NIPALS, φ1 ∝ γ. Therefore, φ1 ∈ Kry1(K, γ). Additionally,

since K0f = Kf , p1 ∝ Kγ. Knowing this, we proceed inductively. That is to say, we
assume that

pm ∈ Krym(K,Kγ), φm ∈ Krym(K, γ), m < `.

We will prove each of the two statements separately.

φ` ∈ Kry`(K, γ)

By expanding φ`, we obtain

φ` ∝ E(X`−1Y ) = E ((X`−2 − T`−1p`−1)Y ) = aφ`−1 − E (t`−1p`−1Y ) =
= aφ`−1 − p`−1E (T`−1Y ) = aφ`−1 − p`−1b,

where a and b are constants. Since p`−1 ∈ Kry`−1(K,Kγ) ⊂ Kry`(K, γ), this result
implies φ` ∈ Kry`(K, γ).

p` ∈ Kry`(K,Kγ)

Finally, we expand p`. In order to do so, we first apply its definition in the algorithm
and, then, the second property of Lemma 2.3.2.

p` ∝ K`−1φ` = E(X`−1T`) = E(XT`) = E(X 〈X`−1, φ`〉) =

= E
(
X

〈(
X −

`−1∑
i=1

Tipi

)
, φ`

〉)
=

= E
(
X 〈X,φ`〉 −

`−1∑
i=1

XTi 〈pi, φ`〉
)

=

= E(X 〈X,φ`〉)−
`−1∑
i=1
〈pi, φ`〉E(XTi) =

= E(X 〈X,φ`〉)−
`−1∑
i=1
〈pi, φ`〉E(Xi−1Ti) =

= E(X 〈X,φ`〉)−
`−1∑
i=1
〈pi, φ`〉 〈φi,Ki−1φi〉 pi =

= aKφ` −
`−1∑
i=1

bipi,
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2. Application of PLS to regression problems

where a and {bi}`−1
i=1 are unimportant constants. Since φ` ∈ Kry`(K, γ), Kφ` ∈ Kry`(K,Kγ).

Therefore, p` ∈ Kry`(K,Kγ).

Finally, we can show that the basis extracted by NIPALS form an orthogonal basis of
the Krylov subspace.
Theorem 2.3.4. NIPALS obtains an orthonormal basis {φ`}L`=1 that spans the Krylov sub-
space KryL(K, γ).

Proof. First, note that, by construction (line 3 of Algorithm 1), the basis vectors have
norm one. Considering this and Theorem 2.3.3, we only need to show that {φ`} are
orthogonal. Let us denote ci = ‖E(Xi−1Y )‖−1. WLOG, we assume i < j and expand
the product:

〈φi, φj〉 = 〈φi, cjE(Xj−1Y )〉 =
= E 〈φi, cjXj−1Y 〉 =

= E
〈
φi, cj

Xi−1 −
j−1∑
k=i

Tkpk

Y 〉

= E 〈φi, cjXi−1Y 〉 −
j−1∑
k=i

E 〈φi, cjTkpkY 〉 =

= cjc
−1
i 〈φi, φi〉 −

j−1∑
k=i

cjE (TkY 〈φi, pk〉) =

= cjc
−1
i − cjE (TiY 〈φi, pi〉) =

= cjc
−1
i − cjE (TiY ) =

= cjc
−1
i − cjE (〈φi, Xi−1〉Y ) =

= cjc
−1
i − cjc−1

i E (〈φi, φi〉) = 0.

Using this orthogonal basis, it is already possible to calculate the PLS approximation
by applying the formulas derived in Section 2.2.1. However, for completeness, the following
theorem shows that the scores obtained by NIPALS are the PLS scores, as defined in Section
2.2.3.
Theorem 2.3.5. The scores obtained by NIPALS can be expressed as projections of X onto
a conjugate set of directions that span the Krylov space Kry`(K, γ) with respect to K.

Proof. Substituting repeatedly the deflation step of NIPALS, we can express T` as

T` = 〈X`−1, φ`〉 =
〈
X −

`−1∑
i=1

Tipi, φ`

〉
= 〈X,φ`〉 −

`−1∑
i=1

Ti 〈pi, φ`〉 . (2.25)

We now proceed by induction. From the algorithm, it is immediate that T1 = 〈X,φ1〉,
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2.3. Numerical algorithms for PLS regression

and we have already proven that φ1 ∈ Kry1(K, γ). We assume that the result holds true
for all scores up to T`−1. That is to say

Ti = 〈X, vi〉 , vi ∈ Kryi(K, γ), i = 1, . . . , `− 1.

By substituting the inductive hypothesis into (2.25), one gets

T` = 〈X,φ`〉 −
`−1∑
i=1
〈X, vi〉 〈pi, φ`〉 .

Finally, if we reorder the terms and group them inside the inner product, we get

T` =
〈
X,φ` −

`−1∑
i=1

vi 〈pi, φ`〉
〉
.

Therefore, T` = 〈X, v`〉, where v` = φ` −
∑`−1
i=1 vi 〈pi, φ`〉. This proves that the scores

can be expressed as projections of X onto the Krylov subspace. Moreover, since the
scores are uncorrelated, these projection directions must be conjugate with respect to
the covariance operator.

The following corollary contains a formula to calculate the conjugate directions that
define the scores.

Corollary 2.3.1. The directions v` that fulfill T` = 〈X, v`〉 can be calculated as:

1. v` = φ` −
∑`−1
i=1 vi 〈pi, φ`〉, and v1 = φ1.

2. (v1, . . . , v`) = (φ1, . . . , φ`) ((〈pi, φj〉)1<i,j<L)−1.

Proof. The first expression is a direct consequence of the previous proof. To prove the
second one, consider the matrix (〈pi, φj〉)1<i,j<L:

〈p1, φ1〉 〈p1, φ2〉 . . . 〈p1, φ`〉
〈p2, φ1〉 〈p2, φ2〉 . . . 〈p2, φ`〉

... ... . . . ...
〈p`, φ1〉 〈pL, φ2〉 . . . 〈pL, φ`〉

 =


1 〈p1, φ2〉 . . . 〈p1, φ`〉
0 1 . . . 〈p2, φ`〉
... ... . . . ...
0 0 . . . 1

 ,

where we have applied (2.24) and the definition of p` in NIPALS.
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2. Application of PLS to regression problems

We can now multiply this matrix by (v1, . . . , v`):

(
v1 v2 . . . v`

)


1 〈p1, φ2〉 . . . 〈p1, φ`〉
0 1 . . . 〈p2, φ`〉
... ... . . . ...
0 0 . . . 1

 =

=
(
v1 v2 + v1 〈p1, φ2〉 . . . v` +∑`−1

i=1 vi 〈pi, φ`〉
)

=

=
(
φ1 φ2 . . . φ`

)
,

where the last step holds due to the expression for v`. Therefore, by inverting the
(〈pi, φj〉)1<i,j<L matrix, we obtain the desired result. Moreover, we know that the matrix
is invertible since it is upper-triangular and its diagonal does not contain any zeros.

During this section, we have explored the properties of NIPALS. This algorithm calculates
an orthogonal basis of the Krylov subspace, alongside the PLS scores and loadings in an
iterative fashion. However, it does not calculate the PLS approximation or the conjugate
projection directions for the PLS scores directly.

Therefore, to obtain the PLS approximation, either a least squares fit must be performed
(as described in Section 2.2.1) or the conjugate directions must be obtained (as described
in Corollary 2.3.1). In both cases, an additional matrix inversion of an L × L matrix is
required. Usually, L takes a relatively low value and, thus this is not an issue. Nevertheless,
if we want to calculate all PLS approximations up to a specified number of components, we
will need L matrix inversions. This process will be at least of O(L3.373) (Williams, 2014),
possibly reaching O(L4) depending on the matrix inversion method being used. Therefore, it
can become a bottleneck when dealing with a high number of components. In the following
section, we cover the conjugate gradient method, which does not present this drawback.

2.3.2 Conjugate Gradients

The conjugate gradient method is an iterative algorithm that minimizes a quadratic form by
exploring Krylov spaces of increasing order. This method was introduced in Hestenes and
Stiefel (1952), while Nocedal and Wright (1999) provides a summary of its properties. Since
the PLS estimation can be characterized as a least squares approximation restricted to a
Krylov subspace (2.13), β(PLS)

L can be calculated in L iterations of the conjugate gradient
algorithm.

This method extracts a conjugate basis of the Krylov subspace, while obtaining both the
PLS approximation to β∗ and an additional orthogonal basis. By utilizing the properties
described in Section 2.2.3, the PLS approximation to β∗ for each number of components is
calculated directly in each iteration.
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2.3. Numerical algorithms for PLS regression

Algorithm 2 Conjugate Gradient Algorithm
Input: X,Y and L

Output: {β`}Ll=1 and {ϕ`}Ll=1

1: g0 ← −γ
2: ϕ0 ← γ

3: β0 ← 0
4: for l = 1, . . . , L do
5: α` ← − 〈g`−1,ϕ`−1〉

〈ϕ`−1,Kϕ`−1〉 . Calculate step size
6: βl ← β`−1 + α`ϕ`−1 . Calculate next coefficient
7: g` ← Kβ` − γ . Compute the gradient
8: γ` ← 〈g`,Kϕ`−1〉

〈ϕ`−1,Kϕ`−1〉 . Step size for the conjugate direction update
9: ϕ` ← −g` + γ`ϕ`−1 . Next conjugate direction

10: end for

Similarly to NIPALS, our first goal is to show that the directions obtained constitute
a conjugate basis of the Krylov subspace. However, before starting, we need to state a
technical lemma, to be used in the subsequent proofs.

Lemma 2.3.6. From Algorithm 2, we can deduce that g` = g`−1 + α`Kϕ`−1.

Proof. Expanding the expression for g` in the algorithm:

g` = Kβ` − γ = K(β`−1 + α`ϕ`−1)− γ = Kβ`−1 − γ +Kα`ϕ`−1 =
= g`−1 +Kα`ϕ`−1.

Using the previous result, we can now prove the main properties of the conjugate gradient
method.

Theorem 2.3.7. Assuming β` 6= β`+1, the following conditions hold:

1. g` is orthogonal to span {ϕ0, . . . , ϕ`−1}.

2. 〈ϕ`,Kϕi〉 = 0 for i < `.

3. span {ϕ0, . . . , ϕ`} = Kry`+1(K, γ).

4. span {g0, . . . , g`} = Kry`+1(K, γ).

Proof. We will prove these statements at the same time by induction. For ` = 0, they
are trivial. Therefore, we assume the statements hold for `− 1 and prove them for `.
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2. Application of PLS to regression problems

Statement 1

Let i < `− 1, then

〈ϕi, g`〉 = 〈ϕi, g`−1 + α`Kϕ`−1〉 = 〈ϕi, g`−1〉+ α` 〈ϕi,Kϕ`−1〉 = 0,

where both terms are 0 due to the inductive hypothesis. Otherwise, if i = `− 1, then

〈ϕ`−1, gl〉 = 〈ϕ`−1, g`−1〉+ α` 〈ϕ`−1,Kϕ`−1〉 =

= 〈ϕ`−1, g`−1〉 −
〈g`−1, ϕ`−1〉
〈ϕ`−1,Kϕ`−1〉

〈ϕ`−1,Kϕ`−1〉 =

= 0.

Statement 2

To prove this statement, we expand the inner product as

〈ϕ`,Kϕi〉 = 〈−g`,Kϕi〉+ γ` 〈ϕ`−1,Kϕi〉 (2.26)

If i < `− 1, ϕi ∈ Kryi+1(K, γ). Therefore,

Kϕi ∈ Kryi+2(K, γ) = span {ϕ0, . . . , ϕi+1} ⊂ span {ϕ0, . . . , ϕ`−1} ⊥ g`,

and the first term is 0. The second term is also zero due to the second inductive hypoth-
esis.

If i = `− 1, (2.26) is 0 due to the definition of γ`

〈ϕ`,Kϕ`−1〉 = 〈−g`,Kϕ`−1〉+ 〈g`,Kϕ`−1〉
〈ϕ`−1,Kϕ`−1〉

〈ϕ`−1,Kϕ`−1〉 = 0.

Statement 4

We can now prove the fourth statement. This is a direct consequence of the expression
in Proposition 2.3.6: g` = g`−1 +α`Kϕ`−1. Due to the inductive hypothesis for the fourth
statement, ϕ`−1 ∈ Kry`(K, γ). Therefore, Kϕ`−1 ∈ Kry`+1(K, γ). As a result, we have
that span {g0, . . . g`} ⊆ Kry`+1(K, γ). But, since g` is orthogonal to span {g0, . . . , g`−1} =
Kry`(K, γ), the equality must hold.

Statement 3

Finally, we can prove the third statement. This is a direct consequence of the fourth and
second statement. Since ϕ` = −g`+γ`ϕ`−1, span {ϕ0, . . . ϕ`} ⊂ Kry`+1(K, γ). Moreover,
since {ϕi}`i=0 are conjugate directions with respect to a positive definite operator, the
dimension of the space must be `+ 1 and the equality must hold

The previous theorem implies the following result regarding the bases of the Krylov
subspace obtained by the conjugate gradient algorithm.
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2.3. Numerical algorithms for PLS regression

Corollary 2.3.2. The conjugate gradient algorithm provides two bases of the Krylov subspace
Kry`(K, γ):

• A K-conjugate basis {ϕ`}`−1
l=0 .

• An orthogonal basis {g`}`−1
l=0 .

Proof. The first claim is a direct consequence of statements 2 and 3 of the previous
Theorem. To prove the second, it suffices to consider statements 1, 3 and 4, which imply
that g` is orthogonal to the previous gradients. Thus, it is an orthogonal base.

The last property that we want to present is that this algorithm calculates the PLS ap-
proximation directly, unlike NIPALS, where β(PLS)

L has to be computed separately. Moreover,
all the PLS approximations, for each number of components up to the specified number of
iterations (L), are obtained in a single execution of the algorithm.

Theorem 2.3.8. The sequence {β`}Ll=1 coincides with the PLS approximation of β∗ for each
number of components.

Proof. Line 6 of the Algorithm 2 builds the PLS approximation iteratively, therefore, as
an expansion on the conjugate basis. Therefore, it suffices to show that the coefficients
{α`}L`=1 correspond to {b(ϕ)

` }L`=1 from (2.17). However, this is immediate once we compare
the expression obtained for b(ϕ)

` in Proposition 2.2.9 with lines 5 and 7 of the conjugate
gradient algorithm.

In this section, we have explored the properties of the conjugate gradient method, which
centers around the construction of a conjugate basis of the Krylov subspace. This approach
has several advantages with respect to the orthogonal basis in the previous section.

In particular, the PLS approximations are calculated in the algorithm itself, without the
need of any additional steps. This is possible since the coordinates of β(PLS)

L on the conjugate
basis do not have to be completely recalculated at each step (see Proposition 2.2.8).
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Chapter 3

Multivariate Regression: Relationship
between PLS and OLS regression

In this chapter, we focus on the application of PLS to multiple linear regression problems.
We already showed that the PLS approximation can be defined as the solution of a least
squares problem restricted to a Krylov subspace in Section 2.2.2. Therefore, there is a
close relationship between PLS and ordinary least squares (OLS), as the only difference
between them is the restriction of the coefficient search space. In this chapter, we compare
the coefficients estimated by both methods, studying the difference between them as the
number of components considered by PLS increases.

3.1 Partial least squares on a sample

During this analysis, we will consider a sample of N observations of the regressor variables
and the response variable: {(xi, yi)}Ni=1, where xi ∈ RD and yi ∈ R. As usual, the obser-
vations will be grouped row-wise into a matrix X = (x1, . . . ,xN)> ∈ RN×D, and a vector
y = (y, . . . , yN)> ∈ RN .

Additionally, we will utilize the usual notation in most of the multivariate PLS literature,
such as Rosipal and Krämer (2005) or de Jong (1993). In particular, the orthogonal PLS
basis is denoted {w`}L`=1, and, the conjugate PLS basis, {r`}L`=1. Since we are working on
a sample space, each PLS component is also a vector (with N observations): t` ∈ RN for
` = 1, . . . , L. Finally, the covariance operator K and the cross covariance γ are now replaced
by their sample estimators: ΣXX = X>X and ΣXY = X>y.

Considering these changes, the PLS optimization problem in (2.16) can be rewritten as

t` = argmax
t

t>y subject to t = Xr, r ∈ RD, ‖r‖ = 1;

t>ti = 0 i ∈ {1, . . . , `− 1}.

Associated with the components, the weight vectors {r`}L`=1 are defined so that ‖r`‖ = 1 and
t` = Xr`, for ` ∈ {1, . . . , L}. These correspond to the conjugate PLS basis described in the
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3. Multivariate Regression: Relationship between PLS and OLS regression

previous chapter.
The PLS properties and identities presented in the previous chapter can be easily ex-

tended to apply them to the sampled values, instead of the random variables (see Table 3.1).
However, the multivariate nature of the problems considered in this chapter allows us to
simplify some of the results.

Regressor covariance K ΣXX = X>X
Cross covariance γ ΣXY = X>y
Orthogonal basis {φ`}`=1 {w`}L`=1
Conjugate basis {ϕ`}`=1 {r`}L`=1

Table 3.1: Population quantities, along with their sample estimators.

For once, it is possible to rewrite the NIPALS algorithm, as included in Algorithm 3 to
take X and y as inputs. This version of the algorithm is the most popular in PLS literature
(Höskuldsson, 1988; Rosipal & Krämer, 2005), but we have omitted the calculation of the
projection directions, scores, and loadings for the target variable, since they are not needed
for the scalar response case.

Algorithm 3 Sample NIPALS for PLS regression with scalar response
Input: X: the regressor variable data matrix.

y: the response variable data vector.
L: the number of components to extract.

Output: {w`}L`=1: projection weights.
{t`}L`=1: components.
{p`}L`=1: loadings.

1: X0 ← X
2: l← 1
3: while ` < L do
4: w` ← X>

`−1y/‖X>
`−1y‖ . Weights calculation

5: t` ← X`−1w` . Scores calculation
6: p` ← X>

`−1t`/(t>
` t`) . Loadings calculation

7: X` ← X`−1 − t`p>
` . Deflate X

8: l← l + 1
9: end while

At the end of each iteration, X, the data matrix, is modified by removing the projection
on the component computed in that iteration (line 7 of Algorithm 3). As a result, a sequence
of projections of the data matrix can be considered: {X`}L`=1. This deflation step ensures
that subsequent components computed by the algorithm are orthogonal to the ones extracted
up to that point. In particular, lines 6 and 7 of Algorithm 3 show that the deflation can be
interpreted as an orthogonal projection:

X` =
(

I− t`t>
`

t>
` t`

)
X`−1 ` ∈ {1, . . . , L}.

Aside from projections of the original data (the scores), in the algorithm, the weights
{w`}L`=1 are calculated. These vectors correspond to the orthogonal PLS basis defined in
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3.1. Partial least squares on a sample

Section 2.2.1. Note that these vectors are different from {r`}L`=1, but both sets of vectors
can be utilized to calculate the PLS components. In particular, The `-th component can
be computed as t` = Xr`, the projection of the original data onto the `-th element of the
conjugate basis. Alternatively, it is t` = X`−1w`, where w` is the `-th weight vector extracted
by NIPALS. Additionally, the regressor and response loadings can be calculated from the
quantities obtained in NIPALS as p` = X>

`−1t`/‖t`‖2 and q` = y>t`/‖t`‖2, for ` ∈ {1, . . . , L},
respectively.

The following propositions summarize the properties of the quantities obtained in NI-
PALS that are relevant for the analysis presented in the following sections
Proposition 3.1.1. From the NIPALS algorithm, the following properties can be derived:

1. In terms of the PLS components, the original data can be expressed as

X = T`P>
L + XL, y = T`Q>

L + yL, (3.1)

where XL ∈ RN×D and yL ∈ RN are defined as

XL =
L∏
i=1

(
I− tit>

i

t>
i ti

)
X, yL =

L∏
i=1

(
I− tit>

i

t>
i ti

)
y. (3.2)

Additionally, TL, PL and QL are defined as

TL = (t1, . . . tL) ∈ RN×L, PL = (p1, . . . ,pL) ∈ RD×L, QL = (q1, . . . , qL) ∈ R1×L.

2. The Frobenius norms of X` and yL decrease as L increases.

3. After L iterations, XL is orthogonal to the weights: XLWL = 0, where

WL = (w1, . . .wL) ∈ RM×L.

4. The loading matrices PL and QL can be expressed in terms of the components and the
original data as PL = X>TLD−2

L and QL = y>TLD−2
` , with

DL = diag (‖t1‖, . . . , ‖tL‖) ∈ RL×L.

Proof. We prove the properties in order:

1. The identity for X` in (3.2) is a direct consequence of substituting line 6 into line 7
of Algorithm 3. The corresponding identity for y can be derived similarly once one
notices that adding a deflation step for y at the end of each iteration would not
affect the results of NIPALS. The deflation step for y would be y` = y`−1 − t`q`.
Therefore, the deflated y at step ` could be calculated as

y` = y−
∑̀
i=1

tiqi. (3.3)

Since y is only used in the calculation of w`, it suffices to check that adding a
deflation step would not alter this calculation. After adding the deflation step,
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3. Multivariate Regression: Relationship between PLS and OLS regression

w` would be calculated as w` = X>
`−1y`−1/‖X>

`−1y`−1‖. However, if we substitute
(3.3):

X>
`−1y`−1 = X>

`−1

(
y−

`−1∑
i=1

tiqi
)

= X>
`−1y−

`−1∑
i=1

X>
`−1tiqi,

and X>
`−1ti = 0 as long as i < `. Therefore, the second term is zero, and we

have shown that adding a deflation step for y would not alter the results of the
algorithm.

2. The decrease of the Frobenius norm is a consequence of the expressions for X` and
y` in (3.2). We will prove the result for X`. From (3.2), one obtains

X` =
(

I− t`t>
`

t>
` t`

)
︸ ︷︷ ︸

Π`

X`−1. (3.4)

Then, to show the decrement of the norms, we need only show that ‖X`‖F ≤
‖X`−1‖F for 1 ≤ ` < L. Using (3.4),

‖X`‖F = ‖Π`X`−1‖F = ‖U`S`U>
` X`−1‖F = ‖S`U>

` X`−1‖F ≤
≤ ‖U>

` X`−1‖F = ‖X`−1‖F ,

where Π` = U`S`U>
` is the eigenvector decomposition of Π`. Since Π` is a real

symmetric matrix, U` is a unitary matrix, and we can apply that the Frobenius
norm is invariant under unitary operations. Additionally, since Π` is positive-
definite and idempotent, its eigenvalues are either 0 or 1. Therefore, S` has only 0s
or 1s in the diagonal. As a result, multiplying by it can only reduce the Frobenius
norm.

3. The orthogonality between X` and W can be proven showing that X`w` = 0 if
` ≤ L. From (3.2),

X`w` =
(

I− t`t>
L

t>
` tL

)
. . .

(
I− t`t>

`

t>
` t`

)
X`−1w` =

=
(

I− t`t>
L

t>
` tL

)
. . .

(
I− t`t>

`

t>
` t`

)
t` = 0.

4. Regarding the expressions for the loadings, both identities can be proven in the
same way. We will prove the identity for P, theX loadings, showing the equality for
each column of both sides of the equation. This equality is, in turn, a consequence
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of the expression for X in (3.2).

X>t`‖t`‖−2 = (T`−1P`−1)>t`‖t`‖−2 + X>
`−1t`‖t`‖−2 =

= P>
`−1T>

`−1t`‖t`‖−2 + X>
`−1t`‖t`‖−2 =

= p`,

where T>
`−1t` = 0 because the extracted components are orthogonal.

NIPALS calculates both the components and the weights needed to express the compo-
nents as projections of the deflated X` data matrices. However, if one wants to calculate
the PLS components of new data utilizing the weights {w`}L`=1, the deflation process would
have to be repeated. A better approach is to obtain the conjugate basis {r`}L`=1 first, and
then calculate the PLS components of new data by projecting onto this basis. The following
proposition provides an expression for the matrix RL, whose columns contain the elements
of the conjugate basis.
Proposition 3.1.2. The matrix RL ∈ RD×L that fulfills TL = XRL is RL = WL(P>

LWL)−1.

Proof. From Proposition 3.1.1, XLWL = 0. Applying this to the decomposition for X
in (3.1), we obtain:

XRL = (TLP>
L + XL)(WL(P>

LWL)−1)
= TLP>

LWL(P>
LWL)−1 + XLWL(P>

LWL)−1 =
= TL.

3.2 Partial least squares regression on a sample

As in Chapter 2, we consider the linear regression model Y = β>X + ε. In this model,
X ∈ RD is the regressor vector, β ∈ RD is the vector of coefficient (which needs to be
estimated), ε is random noise independent of X, and Y is the scalar response. For the
sake of simplicity, and without loss of generality, both X and Y are assumed to have zero
mean. To fit this model, N independent observations drawn from this model are available:
{(xi, yi)}Ni=1. We further assume that {εi}Ni=1 are iid with variance σ2. In this setting, we
seek to estimate a vector of coefficients β such that yi = β>xi + εi, where i ∈ {1, . . . , N}.
These equations can be grouped row-wise into the matrix equation

y = Xβ + ε, (3.5)

where y = (y1, . . . , yN)> ∈ RN , X = (x1, . . . ,xN)> ∈ RN×D and ε = (ε1, . . . , εN)> ∈ RN .
One possible approximation for β is the ordinary least squares estimator (OLS)

β̂OLS = argmin
β∈RD

‖y−Xβ‖2 = (X>X)−1X>y = ΣXX
−1ΣXY, (3.6)
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where ‖ · ‖ is the euclidean norm, ΣXX = X>X is the empirical estimate of the covariance
matrix of X scaled by the number of observations, and ΣXY = X>y is the empirical estimate
of the covariance matrix of X and Y scaled by the number of observations as well.

A different estimation of β is obtained using PLS regression. The first step is to extract
L PLS components as described in the previous section. Then, a linear prediction is made in
terms of these components: ∑L

`=1 γ̂`
(L)t` = T`γ̂

(L), with γ̂(L) =
(
γ̂

(L)
1 , . . . , γ̂

(L)
`

)>
determined

by least squares as

γ̂(L) = argmin
γ∈RL

‖y−T`γ‖2 = (T>
` TL)−1T>

Ly = D−2
` T>

Ly.

PLS estimates the regression coefficient by expressing this linear predictor in terms of the
original variables T`γ̂

(L) = Xβ̂
(L)
PLS. Using the definition of R` from Proposition 3.1.2:

Xβ̂
(L)
PLS = T`γ̂

(L) = XR`γ̂
(L). Therefore, the PLS approximation of the vector of regression

coefficients is
β̂

(PLS)
L = R`γ̂

(L) = R`D−2
L T>

Ly. (3.7)

Alternatively, as introduced in Section 2.2.2, β̂
(PLS)
L can be viewed as the least squares

approximation to β when the optimization is constrained to a Krylov subspace. In a multi-
variate space, a Krylov subspace is defined as follows:

Definition 3. The Krylov subspace of order L ≤ D generated by the matrix A ∈ RD×D and
the vector b ∈ RD, b 6= 0 is

Kry`(A,b) = span{b,Ab, . . . ,AL−1b}.

Note that, so far in this chapter, we have introduced PLS regression as the result of
least squares regression on the components extracted by NIPALS. The following proposition
shows that the approximation obtained from the components coincides with the restriction
of the least squares problem to the Krylov subspace.

Theorem 3.2.1. The PLS approximation with L components defined in (3.7) is the solution
to the least squares problem

β̂
(PLS)
L = argmin

β∈Kry`(ΣXX,ΣXY)
‖y−Xβ‖2, (3.8)

where Kry`(ΣXX,ΣXY) is the Krylov subspace of order L generated by the matrix ΣXX and
the vector ΣXY.

Proof. Assume that the columns of B` ∈ RD×L constitute a basis of the Krylov subspace
Kry`(ΣXX,ΣXY). Then any β ∈ Kry`(ΣXX,ΣXY) can be expressed as β = B`α for some
α ∈ RL. Thus, the constrained optimization problem given by (3.8) can be transformed
into an unconstrained optimization problem in RL:

argmin
β∈Kry`(ΣXX,ΣXY)

‖y−Xβ‖2 = argmin
α∈RL

‖y−XB`α‖2 = B`(B>
LX>XBL)−1B>

` X>y. (3.9)
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As shown in Eldén (2004), the columns of the matrix W` obtained after L iterations
of NIPALS constitute a basis of Kry`(ΣXX,ΣXY). Therefore, (3.9) holds for B` = WL.
It is then possible to show that β̂

(PLS)
L can be expressed in the form given by the rhs of

(3.9) with B` = WL. To this end, Propositions 3.1.1 and 3.1.2 are applied repeatedly
to (3.7):

β̂
(PLS)
L = R`D−2

` T>
` y = W`(P>

` W−1
` )D−2

` R>
` X>y =

= W`(P>
` W`)−1D−2

` (W`(P>
` W`)−1)>X>y =

= W`(W>
` P`D2

`P>
` W`)−1W>

` X>y =
= W`(W>

` X>T`P>
` W`)−1W>

` X>y =
= W`(W>

` X>(X−X`)W`)−1W>
` X>y =

= W`(W>
` X>XW`)−1W>

` X>y,

where the last step holds because of the orthogonality between X` and W` (Proposition
3.1.1).

This proof makes explicit use of the properties of the matrices defined in the NIPALS
algorithm. Other approaches can be adopted to derive this result. In Eldén (2004), a proof is
given that is based on the relation of PLS with the Lanczos bidiagonalization algorithm. An
alternative derivation is given in Takane and Loisel (2016), leveraging the properties of some
bidiagonal and tridiagonal matrices in the NIPALS algorithm (Noonan & Wold, 1977). The
approach followed in Chapter 2 is yet another alternative. In Chapter 2, the optimization
problem was the starting point, and NIPALS was proved to yield equivalent quantities.

The expression of the vector of PLS regression coefficients given by (3.8) opens up the
possibility of using numerical optimization algorithms that accept linear constraints to com-
pute β̂

(PLS)
L . It suffices to minimize ‖y−Xβ‖2 subject to β belonging to Kry`(ΣXX,ΣXY). In

particular, the conjugate gradient algorithm introduced in the previous chapter is an itera-
tive algorithm that, in the L-th iteration, minimizes the quadratic form ψ(z) = z>Az−b>z
where the exploration is restricted to Kry`(A,b) (Nocedal & Wright, 1999). Thus, the op-
timization problem in Theorem 3.2.1 can be solved using the conjugate gradient algorithm
with A = ΣXX and b = ΣXY. In the next section, we take advantage of this property to
study the evolution of difference between the PLS and OLS approximation to the regression
coefficients, as a function of the number of components considered by PLS.

The following theorem establishes a link between the estimations obtained by both meth-
ods.

Theorem 3.2.2. The OLS estimation of the regression coefficients β̂
(OLS) is contained in

KryM(ΣXX,ΣXY), where M is the number of distinct eigenvalues of ΣXX.
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3. Multivariate Regression: Relationship between PLS and OLS regression

Proof. As a consequence of the Cayley-Hamilton theorem (Bronson & Costa, 2009,
p.220), since ΣXX is a non-singular symmetric matrix, there exists a polynomial PΣXX

of degree M − 1 such that PΣXX(ΣXX)ΣXX = I, where M is the number of differ-
ent eigenvalues of ΣXX. Applying this result to the usual formula of OLS, we obtain
β̂OLS = (X>X)−1X>y = PΣXX(ΣXX)ΣXY ∈ KM(ΣXX,ΣXY).

Corollary 3.2.1. The PLS and OLS estimations of the regression coefficients coincide after
M iterations, where M is the number of different eigenvalues of ΣXX:

β̂
(M)
PLS = β̂OLS.

Proof. It is a direct consequence of Theorem 3.2.2 and the definition of β̂
(PLS)
L as the

solution of a restricted least squared problem in Theorem 3.2.1.

3.3 Relation between partial least squares and ordi-
nary least squares

As described in the previous section, the PLS estimation of the vector of coefficients of a
linear regression model with L components converges to the ordinarly least squares estimator
as L increases. Furthermore, they coincide when L ≥M , the number of distinct eigenvalues
of ΣXX. The goal of this section is to provide an upper bound for the distance between β̂

(PLS)
L

and β̂
(OLS). In order to do so, we take advantage of the formulation of PLS in Theorem 3.2.1,

as a constrained optimization problem that can be solved using conjugate gradients. The
first part of this section follows the convergence analysis for the conjugate gradient method
presented in Nocedal and Wright (1999). First, the PLS estimation is defined as the solution
of yet another optimization problem, in which a distance to the OLS estimator is minimized
subject to some constrains.

Proposition 3.3.1. The PLS approximation to the vector of coefficients of a linear regres-
sion model with L components is the solution to the optimization problem

β̂
(PLS)
L = argmin

β∈KryL(ΣXX,ΣXY)

∥∥∥∥β − β̂OLS

∥∥∥∥2

ΣXX

, (3.10)

where ‖z‖2
ΣXX

= z>ΣXXz, the square of the quadratic-form norm with the positive definite
matrix ΣXX.

Proof. This result is a consequence of the definition of the PLS approximation with L
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3.3. Relation between partial least squares and ordinary least squares

components provided in Theorem 3.2.1:

β̂
(PLS)
L = argmin

β∈KryL(ΣXX,ΣXY)
‖y−Xβ‖2 =

= argmin
β∈KryL(ΣXX,ΣXY)

(
y>y− 2β>X>y + β>X>Xβ

)
=

= argmin
β∈KryL(ΣXX,ΣXY)

(
β>X>Xβ − 2β>X>y

)
=

= argmin
β∈KryL(ΣXX,ΣXY)

(
β>ΣXX β − 2β>ΣXX β̂

(OLS) + (β̂(OLS))>ΣXX β̂
(OLS)

)
=

= argmin
β∈KryL(ΣXX,ΣXY)

∥∥∥∥β − β̂
(OLS)

∥∥∥∥2

ΣXX

,

where we have used that X>y = X>Xβ̂
(OLS) = ΣXXβ̂

(OLS).

The quadratic-form norm ‖ ·‖ΣXX is related to the Mahalanobis distance with the covariance
matrix of the OLS estimator of β. The following observation motivates the use of this norm
as a natural way to quantify the differences between β̂

(PLS)
L and β̂

(OLS).

Corollary 3.3.1. The PLS estimation of the vector of coefficients of a linear regression
model with L components is the solution of the optimization problem

β̂
(PLS)
L = argmin

β∈KryL(ΣXX,ΣXY)
dM(β, β̂OLS),

where dM is the Mahalanobis distance with respect to the matrix 1
σ2 ΣXX

−1, which is the covari-
ance matrix of the OLS estimator of the regression coefficients conditioned to the observations
of X.

Proof. From (3.6), the variance of the OLS estimator conditioned to x1, . . .xN is COLS =
var(β̂OLS|x1, ă . . .xN) = σ2(X>X)−1, where we have used that the var(y|x1, . . .xN) =
var(ε), and that the observations of ε are iid random variables with variance σ2. As a
result, the squared Mahalanobis distance between the β̂OLS estimator and some other
estimator β̂ can be expressed as

dM
(
β̂, β̂OLS

)2
=
(
β̂ − β̂OLS

)>
C−1

OLS

(
β̂ − β̂OLS

)
=

= 1
σ2

(
β̂ − β̂OLS

)> (
X>X

) (
β̂ − β̂OLS

)
=

= 1
σ2

∥∥∥β̂ − β̂OLS

∥∥∥2

ΣXX
.

Thus, the distance induced by the quadratic form norm ‖ · ‖ΣXX is proportional to the
Mahalanobis distance with σ2ΣXX

−1, the covariance matrix of the OLS estimator.
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3. Multivariate Regression: Relationship between PLS and OLS regression

Therefore, with L components, PLS finds the approximation to the regression coefficients
that is closest to β̂

(OLS) with respect to the Mahalanobis distance with the covariance matrix
of the OLS estimator, in the Krylov subspace of order L generated by ΣXX and ΣXY. The
Mahalanobis distance provides a natural measure of differences in the space of estimations,
one that captures its geometry better than the Euclidean distance. Furthermore, the Maha-
lanobis distance between the estimations is deeply related to the Euclidean distance between
the predictions:

dM

(
β̂

(PLS)
L , β̂

(OLS)
)2

= 1
σ2

(
β̂

(PLS)
L − β̂

(OLS)
)> (

X>X
)(

β̂
(PLS)
L − β̂

(OLS)
)

=

= 1
σ2

∥∥∥ŷOLS − ŷ(L)
PLS

∥∥∥2
.

Additional relations can be unveiled by the observation that each element in a Krylov
subspace of order L is associated with a polynomial of degree L − 1. As a result, the
optimization problem in Proposition 3.3.1, is equivalent to the polynomial fitting problem
given in the following corollary:

Corollary 3.3.2. The PLS estimation with L component is β̂
(PLS)
L = P ∗

L−1(ΣXX)ΣXY, where

P ∗
L−1 = argmin

P∈PL−1

∥∥∥∥P (ΣXX)ΣXY − β̂OLS

∥∥∥∥2

ΣXX

, (3.11)

and PL−1 is the space of polynomials of degree lower or equal to L− 1.

Proof. Since β̂
(PLS)
L ∈ Kry`(ΣXX,ΣXY), it can be expressed as β̂

(PLS)
L = P ∗

L−1(ΣXX)ΣXY.
By substituting this expression into (3.10), we obtain (3.11).

As stated in the following theorem, the difference between the PLS and OLS estimations
can be expressed as an optimization problem in a space of polynomials:

Theorem 3.3.1. The distance between the PLS and OLS approximations fulfills∥∥∥∥β̂(PLS)
L − β̂OLS

∥∥∥∥2

ΣXX

= min
Q`∈ΩL

D∑
d=1

Q`(λd)2λdξ
2
d, (3.12)

where {λd}Dd=1 are the eigenvalues of ΣXX, {ξd}Dd=1 are the coefficients of the expansion of
β̂OLS in {ud}Dd=1, the basis of eigenvectors of ΣXX, and Ω` = {QL ∈ PL : QL(0) = −1}.
Additionally, for each L, the minimum is reached for Q∗

`(t) = tP ∗
L−1(t)− 1.

Proof. Since ΣXX = X>X is a real, symmetric matrix, it is possible to find a sequence of
non-negative eigenvalues {λ1, . . . , λD} and orthonormal eigenvectors: {u1, . . . ,uD} such
that ΣXX = ∑D

d=1 λdudu>
d . This eigenvalue decomposition has three properties:

• First, the eigenvectors span the entire RD space. Therefore, D scalars {ξd}Dd=1 can
be found such that β̂OLS = ∑D

d=1 ξdud.
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3.3. Relation between partial least squares and ordinary least squares

• Second, the norm of a vector can be calculated as ‖z‖2
ΣXX

= z>ΣXXz = ∑D
d=1 λd(u>

d z)2.
• Third, for any polynomial P , it holds that P (ΣXX)ud = P (λd)ud, for d = 1, . . . , D.

Using these properties we can now find an expression to calculate the lhs of (3.12)
in terms of the polynomials P ∗

L.∥∥∥∥β̂L − β̂OLS

∥∥∥∥2

ΣXX

=
∥∥∥∥(P ∗

l−1(ΣXX)ΣXX − I)β̂OLS

∥∥∥∥2

ΣXX

=

=
∥∥∥∥ D∑
d=1

(P ∗
l−1(ΣXX)ΣXX − I)ξdud

∥∥∥∥2

ΣXX

=

=
D∑
d=1

Q∗
L(λd)2λdξ

2
d,

(3.13)

where Q∗
l (t) = tP ∗

l−1(t)− 1, a polynomial of degree l that fulfills Q∗
L(0) = −1.

Additionally, Corollary 3.3.2 shows that P ∗
l−1 is the polynomial that minimizes the

RHS of (3.13) over all polynomials of degree l − 1. Therefore, Q∗
l minimizes that same

quantity over all the polynomials QL of degree l such that QL(0) = −1. That is to say,
over ΩL.

This theorem implies that any polynomial Q` ∈ ΩL can be used to provide an upper
bound for the distance between the OLS and PLS estimations:∥∥∥∥β̂(PLS)

L − β̂OLS

∥∥∥∥2

ΣXX

≤
D∑
d=1

Q`(λd)2λdξ
2
d, for all QL ∈ ΩL.

Furthermore, it is possible to obtain an upper bound also in terms of the norm of the OLS
estimator and of Q` evaluated at the eigenvalues of ΣXX.

Corollary 3.3.3. Given a function H : Ω` → R that, for any polynomial R ∈ Ω`, fulfills
R(λd)2 ≤ H(R) over all d ∈ {1, . . . , D}, and given a particular polynomial Q` ∈ ΩL,∥∥∥∥β̂(PLS)

L − β̂OLS

∥∥∥∥2

ΣXX

≤ H(Q`)
∥∥∥∥β̂OLS

∥∥∥∥2

ΣXX

, for all Q` ∈ ΩL.

Proof. From Theorem 3.3.1, and the condition R(λd)2 ≤ H(R) for d = 1, . . . , D,
∥∥∥∥β̂(PLS)

L − β̂OLS

∥∥∥∥2

ΣXX

= min
R∈Ω`

D∑
d=1

R(λd)2λdξ
2
d ≤

≤ min
R∈Ω`

H(R)
D∑
d=1

λdξ
2
d =

= min
R∈Ω`

H(R)
∥∥∥∥β̂OLS

∥∥∥∥2

ΣXX

≤

≤ H(Q`)
∥∥∥∥β̂OLS

∥∥∥∥2

ΣXX

.
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3. Multivariate Regression: Relationship between PLS and OLS regression

Therefore, by choosing an H function and a specific polynomial Q`, an upper bound
on the PLS error can be obtained. There are different choices for H. In Nocedal and
Wright (1999), a number of results are given using the upper bound H1(Q`) = maxdQL(λd)2.
However, this bound has a major disadvantage: it is not straightforward to calculate the
polynomial Q` that minimizes H1. In the remainder of this section, the simpler upper bound
H2(Q`) = ∑D

d=1 QL(λd)2 is considered. The following theorem provides an uper bound on
the PLS error by calculating the polynomial in Ω` that minimizes H2.

Theorem 3.3.2. The following bound for the squared norm of the difference between the
OLS and L-th PLS estimation holds:∥∥∥∥β̂(PLS)

L − β̂OLS

∥∥∥∥2

ΣXX

≤ CL

∥∥∥∥β̂OLS

∥∥∥∥2

ΣXX

, (3.14)

where

CL = D(1− c>
LH−1

L cL), H` =


µ′

2 . . . µ′
L+1

... . . . ...
µ′
L+1 . . . µ′

2L

 , c` =


µ′

1
...
µ′
`

 ,
and µ′

` is the `-th raw moment of the distribution of the eigenvalues of ΣXX.

Proof. All polynomials in ΩL can be expressed as RL(t) = −1+a1t+ · · ·+aLt
L for some

coefficients a1, . . . , aL. Therefore, as a function of the coefficients of the polynomials,
the bound can be expressed as hL(a1, . . . , aL) = ∑D

d=1

(
−1 + a1λd + · · ·+ aLλ

L
d

)2
. To

minimize this function, we calculate its gradient and determine the coefficients for which
it is zero:

∂hL
∂al

= 2
D∑
d=1

(−1 + a1λd + · · ·+ aLλ
L
d )λld =

= −2
D∑
d=1

λ`d + 2a1

D∑
d=1

λ`+1
d + · · ·+ 2aL

D∑
d=1

λ`+Ld =

= 0,
for all ` = 1, . . . , L.

This set of equations can be rewritten in terms of the sample raw moments of the
eigenvalues:

−2Dµ′
` + 2a1Dµ

′
`+1 + · · ·+ 2aLDµ′

`+L = 0 ⇐⇒ a1µ
′
`+1 + · · ·+ aLµ

′
`+l = µ′

`,

for all ` = 1, . . . , L.
These equations can be expressed as the system HLaL = cL. Therefore, the coeffi-
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cients that minimize hL are a∗
L = H−1

L cL. Additionally, we express hL as

hL(a1, . . . , aL) = (−1, aL)


1 . . . 1
... . . . ...
λL1 . . . λLD




1 . . . λL1
... . . . ...
1 . . . λLD


(
−1
aL

)
=

= (−1, aL)
(
D Dc>

L

DcL DHL

)(
−1
aL

)
.

Substituting the expression for a∗
L in the previous formula and multiplying blockwise:

hL(a∗
L) = (−1,H−1

L cL)
(
D Dc>

L

DcL DHL

)(
−1

H−1
L cL

)
=

= (−1,H−1
L cL)

(
−D +Dc>

LH−1
L cL

0

)
=

= D(1− c>
LH−1

L cL).

Additionally, the obtained coefficients a∗
L define the polynomial

R∗
L(t) = −1 + a∗

1t+ · · ·+ a∗
Lt
L,

which has the minimal sum of squared values when evaluated at the eigenvalues λ1, . . . , λD.

This result provides an upper bound for the distance between β̂
(PLS)
L and β̂OLS that de-

pends only on the distribution of the eigenvalues of the regressor covariance matrix. Explicit
expressions of this bound can be derived for PLS regression with one and two components.

Corollary 3.3.4. The bounds given in (3.14) for L = 1 and L = 2 can be expressed as a
function of the coefficient of variation (cv = σ/µ), the coefficient of asymmetry (γ) and the
kurtosis (κ) of the eigenvalues of ΣXX.

C1 = D
c2
v

1 + c2
v

, C2 = D
c4
v(κ− γ2 − 1)

(κ− γ2)c4
v + (κ− 3− 2γ)c3

v − 2γ cv + 1 .

Proof. These identities are obtained by expressing the raw moments that appear in C`
in terms of µ, σ, γ and κ, and then simplifying the resulting formulas.

From these expressions it is apparent that the more concentrated the eigenvalues of ΣXX

(cv → 0), the fewer PLS components are needed to approximate β̂
(OLS) with a given accuracy.

The bound for L = 1 depends only on the coefficient of variation of the distribution of
eigenvalues cv = σ/µ. It is proportional to c2

v in the limit cv → 0+. Therefore, if the
eigenvalues of ΣXX are grouped in one tight cluster, keeping a single PLS component yields
an accurate approximation of β̂OLS. The value of the bound for L = 2 depends not only
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3. Multivariate Regression: Relationship between PLS and OLS regression

on cv but also on the coefficient of asymmetry and the kurtosis, which makes it harder to
interpret. However, it is proportional to c4

v in the limit cv → 0+.
Additionally, from Pearson’s inequality (κ ≥ 1 + γ2), the quantity κ − γ2 − 1 is non-

negative (Sharma & Bhandari, 2015). This quantity is zero for dichotomous distributions.
Thus, C2 should be small when the eigenvalues are distributed in two tightly packed clusters.
In the next section, we provide numerical illustrations of the dependence of distance between
β̂

(PLS)
L and β̂

(OLS) as a function of L, for different distributions of the eigenvalues of ΣXX.

3.4 Empirical study

In this section, an empirical study is carried out to investigate the effect of the eigenvalue dis-
tribution of the regressor covariance matrix on PLS. Specifically, we analyze the dependence
of the quadratic-form distance between β̂

(PLS)
L and β̂

(OLS), the upper bound established in
Theorem 3.3.2 for this distance, and the accuracy of the linear predictor as a function of
the number of PLS components considered. The analysis is first performed in regression
problems with synthetic data for different forms of the distribution of eigenvalues. The cor-
responding analysis is then performed for the California Housing dataset (Kelley Pace &
Barry, 1997).

3.4.1 Synthetic data

In this section, synthetic data are used to illustrate the behavior of the PLS method de-
pending on the eigenvalue distribution of the regressor covariance matrix. Five regression
problems are considered. In these problems, X is modelled as a multivariate normal vector
X ∼ N(0,Σ). The eigenvalues of the covariance matrix Σ, {λd}Dd=1, are sampled from differ-
ent distributions with specific characteristics. Specifically, D = 30 eigenvalues are selected
with the following characteristics:

1. 30 equally spaced eigenvalues from 2.5 to 7.5.
2. One cluster of 30 eigenvalues sampled from N(5, 0.1).
3. Two clusters of 15 eigenvalues, each sampled from N(2.5, 0.1) and N(7.5, 0.1).
4. Three clusters of 10 eigenvalues sampled from N(2.5, 0.1), N(5, 0.1), and N(7.5, 0.1).
5. Three clusters of 10 eigenvalues sampled from N(0.2, 0.1), N(5, 0.1), and N(7.5, 0.1);

so that one of the clusters is very close to zero.

These eigenvalue distributions are displayed in Figure 3.1. The actual covariace matrix is
generated by a random rotation of the diagonal eigenvalue matrix: Σ = Q>diag(λ1, . . . , λD)Q,
where Q is a uniformly-distributed orthogonal random matrix. The rotation matrix Q is
obtained from the QR decomposition of a random matrix whose entries are sampled from a
standard normal distribution (Mezzadri, 2007). Finally, the data matrix, X = (x1, . . . ,xN)>

is obtained by stacking N = 1000 samples from this random vector.

46



3.4. Empirical study

0 2 4 6 8 10

Uniform eigenvalues

0 2 4 6 8 10

One cluster of eigenvalues

0 2 4 6 8 10

Two clusters of eigenvalues

0 2 4 6 8 10

Three clusters of eigenvalues

0 2 4 6 8 10

Eigenvalues

Three clusters of eigenvalues, one near zero

Figure 3.1: Eigenvalue distributions in the synthetic regression problems

To generate the response data, the linear model with additive noise presented in (3.5)
is used. The β parameter is a random vector whose components are sampled from a uni-
form distribution in [0, 1]. The noise ε is sampled from a N(0, σ2) distribution, where
σ = 0.1 std(Xβ), so that the model is not dominated by the noise. Finally, the response
vector is computed as y = Xβ + ε.

In the experiments carried out, the closeness between β̂
(PLS)
L and β̂

(OLS) is quantified in
terms of the normalized estimation difference:

NED` =
‖β̂

(PLS)
L − β̂OLS‖2

ΣXX

‖β̂OLS‖2
ΣXX

.

From (3.14), it is apparent that C` is an upper bound on NEDL. The results reported are
averages over 20 realizations of the data.

The plots in the left column of Figure 3.2 display the dependence of the normalized
differences between the estimation, NED`, and of the corresponding upper-bound, CL, on
L, the number of PLS components considered. These plots show how, as L increases, the
decrease of the bound introduced in Theorem 3.3.2 parallels that of the difference between
the estimations. As discussed in the previous section, PLS can be formulated as a polynomial
fitting problem. In particular, Theorem 3.3.1 provides a way of expressing the error of the
estimation with L iterations as a function of the values of some polynomial Q`, of degree
lower or equal to L that fulfills QL(0) = −1. The optimal polynomials Q∗

` defined in Theorem
3.3.1 are plotted in the right column of Figure 3.2 .

It is possible to interpret the features of the curves displayed in the left column of Figure
3.2 from the characteristics of the polynomials plotted in the right column of this figure. In
the first scenario, in which the eigenvalues are uniformly distributed in an interval separate
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from zero, considering more components allows to find polynomials that fulfill Q`(0) = −1
and take small values for all the eigenvalues. In the second one, the decrease of NED`

is much steeper because having the eigenvalues closely packed in a single cluster makes
the polynomial fitting problem much simpler. For a given numbers of components, the
corresponding polynomials take smaller values on the eigenvalues in the second scenario
than in the first one. This result is consistent with the dependency of C1 and C2 on cv given
in Corollary 3.3.4.

Figure 3.2 also shows that the decrease of NED` with L follows different patterns de-
pending on the number of clusters in which the eigenvalues are grouped. In particular, the
decrease is sharper for specific numbers of components. When the eigenvalues are grouped
in two clusters, the first abrupt decrease of NED` occurs between L = 1 and L = 2. This
observation can be explained by noting it is not possible to find a polynomial of degree one
(i.e., a straight line) that takes small values on both clusters and passes through the point
(0,−1). However, a polynomial of degree two (i.e., a parabola) provides a reasonable fit.
Significant improvements are observed also for L = 4 and L = 6. This is due to the fact
that, in those cases, it is possible to find polynomials that pass through (0,-1) with equal
numbers of roots located in the vicinity of each of the clusters. A similar analysis can be
carried out for the fourth scenario, in which the eigenvalues are clustered in 3 groups. In
this case, sharper improvements are found for L = 3 and L = 6.

To complete the analysis, we consider a case in which one of the clusters of eigenvalues is
close to 0. From the plot in the bottom left of Figure 3.2 it is apparent that the decrease of
NED` with L is rather slow. The reason for this is that, since the fitted polynomial has to go
through (0,−1), large values of L are needed so that the polynomial can take simultaneously
small values for the eigenvalues in the vicinity of 0 and in the other clusters.

We now compare the performance of PCA and PLS regression as a function of L, the
number of components considered. The quality of the predictions is measured in terms of
the coefficient of determination (R2 score), which represents the proportion of explained
variance. In most regression problems PLS is expected to outperform PCA because, in the
definition of the components, the correlations between the regressor and response variables
are taken into account in the former, but not in the latter (Frank & Friedman, 1993). Since
the properties of PLS depend on the distribution of the eigenvalues of ΣXX, the regressor
covariance matrix, we carry out the analysis for the five scenarios described earlier. In
Figure 3.3 we compare the curves that trace the dependence R2 on L, for PLS (left plots)
and PCA (right plots) in the first two synthetic datasets. This comparison illustrates the
differences between problems in which the eigenvalues of the regressor covariance matrix are
uniformly distributed and problems in which they are clustered around a particular value,
different from zero. As expected, PLS obtains better results when the eigenvalues concentrate
around a few different values. In fact, when they are clustered in a single tight group, the
PLS regression model with only one component provides a very accurate prediction of the
response. By contrast, when the eigenvalues are uniformly distributed, more components
are needed. The behavior of PCA is markedly different. In the case of clustered eigenvalues,
the R2 score of PCA increases linearly with the number of eigenvalues considered. This is
to be expected since the increment in explained variance is proportional to the eigenvalue
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Figure 3.2: PLS estimation distance analysis with different distributions of eigenvalues of
the regressor covariance matrix
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3. Multivariate Regression: Relationship between PLS and OLS regression

that corresponds to the eigenvector considered by PCA at each step. If the eigenvalues are
spread out uniformly, PCA considers first the components that correspond to the largest
eigenvalues. Therefore, the magnitude of the eigenvalues decreases as more components are
considered, which leads to a reduction of the rate at which R2 increases as a function of L.
Additionally, Figure 3.3 also shows that PCA needs many more components to achieve the
same R2 scores as PLS.

The plots displayed in Figure 3.4 illustrate the properties of the evolution of the R2 score
as a function of L, depending on the number of clusters in which the eigenvalues are grouped.
From these results we conclude that, in this case, the number of PLS components necessary
to obtain a value of R2 close to 1 (perfect prediction) coincides with the number of eigenvalue
clusters. This is consistent with the analysis of the differences between β̂

(PLS)
L and β̂

(OLS) for
these datasets. Regarding PCA, we can see how the number of clusters of eigenvalues has
only minor effects in dependence of the R2 scores with L. For example, with two clusters,
the R2 increases faster during the first 15 iterations, which corresponds to the cluster with
the largest 15 eigenvalues. For the scenario with three clusters of eigenvalues, the rate of
increase drops after 10 and 20 components have been considered. These correspond to having
included in the model all the components in the first, and in the first and second largest
clusters, respectively.

Finally, we use the last two scenarios to investigate the impact of having a cluster of
eigenvalues close to zero. Figure 3.5 shows how that for L > 1, the performance of PLS
deteriorates when there is a cluster of small eigenvalues. This is again to be expected
from the theoretical analysis carried out in the previous section because of the difficulties
of fitting a polynomial that goes throgh (0,−1) and takes small values at the locations of
the eigenvalues in the clusters. By contrast, PCA achieves better results when a sizeable
fraction of the eigenvalues are close to zero. In fact, the maximum value of R2 is attained
for L = 20, once all the components that correspond to eigenvalues significantly larger than
zero have been selected. Nonetheless, for a given number of components, PLS outperforms
PCA regression also in these scenarios.
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Figure 3.3: Accuracy of the predictions of PCA and PLS regression measured in terms of the
R2 score depending on whether the eigenvalues are concentrated or spread out uniformly.
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Figure 3.4: Accuracy of the predictions of PCA and PLS regression measured in terms of
the R2 score depending on the number of clusters in which the eigenvalues are grouped
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Figure 3.5: Accuracy of the predictions of PCA and PLS regression measured in terms of
the R2 score, depending on whether there is a cluster of eigenvalues near zero

3.4.2 The Californian Housing dataset

In this section we analyze the properties of PLS regression for the California Housing dataset
(Kelley Pace & Barry, 1997) In this problem, the goal is to predict the median house value
in a particular block group in a California district using 8 attributes (D = 8): the median
house age, the average number of rooms, the average number of bedrooms, the number of
people residing within the block, the average number of household members, and the latitude
and longitude of the block group. As a preprocessing step, both the regressor vector and
the response variable are centered so that they have zero mean. Each column of X is scaled
so that it has unit variance. In the original dataset, a median house value of 500, 000$
is assigned to instances whose actual value is above that threshold. To avoid distortions
associated to this thresholding, these examples have been discarded.

Figure 3.6 shows the eigenvalue distribution of the regressor covariance matrix for the
California Housing dataset. The eigenvalues are roughly grouped in three clusters, one of
them close to zero. This pattern is similar to the last synthetic dataset analyzed in the
previous section. However, the eigenvalues in the central cluster are more spread out. This
dispersion hinders somewhat the performance of PLS, which is nonetheless fairly good. The
differences between the PLS and the OLS approximations as a function of L are analyzed in
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3. Multivariate Regression: Relationship between PLS and OLS regression

Figure3.7. The left plot displays the dependence of these differences, quantified by NED`,
and of CL, the upper bound of these differences derived in this work, as a funtion of L,
the number of PLS components considered. Note that, for L = 8 the PLS coincides with
the OLS estimator. As expected, the distance between the estimations decreases slowly,
because of the presence of the small eigenvalues and, to a lesser extent, the dispersion of the
medium-sized eigenvalues.

Figure 3.8 presents the results of a comparison between PCA and PLS regression. The
left plot displays the curves that trace the dependence of the R2 score, a measure of the
quality of the predictions, with L, the number of components considered. From these results
one concludes that PLS obtains better results than PCA, and needs fewer components to
achieve an accuracy comparable to OLS. The evolution of C` as a function of L is displayed
in the right plot of this figure. Note that the descent of the bound mirrors the increase of
the R2 score as L increases. This illustrates that the upper bound defined in Theorem 3.3.2
provides an effective way to monitor the performance of PLS.
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Figure 3.6: Eigenvalue distribution in the California Housing dataset
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Figure 3.7: PLS estimation distance analysis in the California Housing dataset
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Chapter 4

Empirical comparison of PCA and
PLS Regression

In the previous chapter we analyzed the impact of the eigenvalue distribution of the regres-
sor covariance matrix on the effectiveness of partial least squares and principal component
regression. As shown in Section 3.4, PLS regression can provide better results than PCA
regression when these eigenvalues are grouped in clusters. The goal of this chapter is to
investigate how this translates to real-world performance, by analyzing the performance of
PLS, with respect to PCA in a variety of real-world datasets. The datasets selected for this
study span different domains, and posses varying characteristics, allowing us to produce a
representative comparison of the two dimensionality reduction techniques.

We also seek to study how these dimensionality reduction methods perform when applied
as part of the preprocessing step on a regression problem. First, we analyze the impact of
scaling the data before performing dimensionality reduction. Second, we consider their use
in combination with non-linear predictors and regularized methods. Doing so enables us to
study if PLS is an effective technique when non-linear relationships have to be considered.
This analysis is performed for both finite-dimensional regressors (Section 4.1) and functional
regressors (Section 4.2).

4.1 Multiple regression

In this empirical study, ten regression problems from different domains have been considered.
In what follows each dataset is described, alongside with the preprocessing steps applied. As
a summary, the main properties of each dataset are enumerated in Table 4.1.

Diabetes

The original source of the dataset is Efron et al. (2004), and it was downloaded through scikit-
learn’s dataset module. The target variable is a quantitative measure of disease progression
during one year. Ten regressors are considered: age, sex, body mass index, average blood
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4. Empirical comparison of PCA and PLS Regression

Samples Regressors Source

Diabetes 442 10 (Efron et al., 2004)
California Housing 20640 8 (Kelley Pace & Barry, 1997)
Cancer Registry 3047 29 clinicaltrials.gov, cancer.gov, census.gov
Wine Quality 1599 11 (Cortez et al., 2009)
US Census 72727 31 US Census Bureau, tables DP03 and DP05.
Life Expectancy 2938 19 Global Health Observatory, download link
Bike Sharing 8760 12 (Sathishkumar et al., 2020)
AIDS Clinical Trials 2139 23 (Hammer et al., 1996)
Obesity 2111 22 (Palechor & Manotas, 2019)

Table 4.1: Multivariate datasets considered

pressure, and six blood serum measurements. The data was collected for 442 patients.

California Housing

The original source of the dataset is Kelley Pace and Barry (1997), and it was retrieved
through scikit-learn’s dataset module. The target variable is the median house price in geo-
graphically compact blocks of California real state. Eight regressor variables are considered:
the median income in the block, the average number of rooms, the average number of bed-
rooms, the population, the average of household members, and the latitude and longitude.
The dataset contains 20640 samples.

The target variable has been thresholded at 5 hundred of thousands of dollars. Since this
affects less than 5 % of the observations, the affected rows have been discarded. Moreover,
highly atypical values were detected in the columns corresponding to the average number of
bedrooms, rooms, and occupancy (count of household members), as well as the population.
To solve this issue, a threshold of 5 times the interquartile range was empirically determined,
and the observations taking values outside this range were dropped. Figure 4.1 shows the
data after discarding these observations.
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Figure 4.1: Result of outlier removal in the California Housing dataset
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4.1. Multiple regression

Cancer Registry

This dataset was created by Noah Rippner, as the result of joining data cancer trial data
from clinicaltrials.gov and cancer.gov, along with demographic data from census.gov. The
version utilized for the experiments that follow was downloaded from https://data.world/
nrippner/cancer-trials. The target variable is the age-adjusted 1 mortality rate per county
in the United States. Twenty-nine regressor variables are considered, including the incidence
rate, education statistics, income data, and racial information. The data was collected for
3047 counties in the US.

The same outlier removal procedure as in the previous dataset was applied considering
the values from the columns containing the median age, the number of cancer trials in the
county per capita and the population estimate. Additionally, the column containing the
name of the county was dropped, along with the total number of deaths by year and the
average number of deaths per year. These last two columns were discarded as they contained
very similar information to the target variable (age-adjusted death rate).

Wine Quality

The original source of the dataset is Cortez et al. (2009), and the dataset was downloaded
from https://www. kaggle.com/datasets/uciml/red-wine-quality-cortez-et-al-2009. The tar-
get variable is the mean score given to a red wine sample by three sensory assessors. Eleven
regressor variables are considered, containing the results of common psychochemical tests:
fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total
sulfur dioxide, density, pH, sulfates, and alcohol contents. The data was collected for 1599
wine samples.

US Census

This dataset is the result of joining the DP03 and DP05 tables from the 2015 American Com-
munity Survey 5-year estimates study conducted by the Census Bureau of the United States.
The data has been downloaded from https://www.kaggle.com/datasets/muonneutrino/us-
census-demographic-data. The target variable is the unemployment rate in a census tract in
the US. Census tracts are geographical subdivision of US counties defined by the census bu-
reau. Thirty-one regressor variables are considered, including racial, income and occupation
statistics. The data was collected for 72727 tracts.

As part of the preprocessing, the identifier of the census tract was removed, along with the
county and state name. Additionally, the count of employed inhabitants was also dropped,
due to its similarity with the target variable (unemployment rate).

1https://www.health.ny.gov/diseases/chronic/ageadj.htm
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4. Empirical comparison of PCA and PLS Regression

Life Expectancy

This dataset was created by Kumar Rajarshi, as the result of joining data sources pro-
vided in the Global Health Observatory by the World Health Organization, and performing
some preprocessing on them. The dataset, alongside with a description of the preprocess-
ing steps is available at https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-
who?resource=down-. The target variable is the life expectancy of a country. Nineteen
regressor variables are considered, including demographic aspects such as population or in-
fant mortality, economic indicators such as GDP and Human Development Index, and the
prevalence of some diseases such as Hepatitis or HIV. The data was collected for 193 coun-
tries during the years 2000-2015. In some countries, data was not available for all years,
leading to some rows being absent. The total number of observations is 2938.

The Life Expectancy dataset required little processing. The country and year columns
were dropped. Furthermore, the status variable, which contained either “Developing” or
“Developed” was transformed to a binary variable.

Bike Sharing

The original source of the dataset is Sathishkumar et al. (2020), and the dataset was down-
loaded from UC Irvine’s Machine Learning Repository (Markelle, Longjohn, & Nottingham,
1998). The target variable is the number of bikes rented during an hour. Twelve regres-
sor variables are considered, including weather information, the season, and the presence of
holidays. The data was collected for 8760 windows of one hour.

As part of the preprocessing, the date column was dropped. Two more columns were
modified: the textual season column was encoded employing one-hot encoding, and the
holiday column was encoded as 0 (no holiday) and 1 (holiday).

AIDS Clinical Trials

The original source of the dataset is Hammer et al. (1996), and the dataset was downloaded
from UC Irvine’s Machine Learning Repository (Markelle et al., 1998). The target variable is
the time of failure of each subject. Twenty-three regressor variables are considered including
physical statistics, drug history and the outcome of medical tests. The data was collected
for 2139 patients.

Obesity

The original source of the dataset is Palechor and Manotas (2019), and the dataset was
downloaded from UC Irvine’s Machine Learning Repository (Markelle et al., 1998). The
target variable is the obesity level. The observations have been labeled with one of seven
obesity levels, from “Insufficient weight” to “Obesity Type III”. Twenty-two regressor vari-
ables are considered, including physical traits, family history, and eating habits. The dataset
contains 2111 observations.
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4.1. Multiple regression

The main preprocessing step in the Obesity dataset was to transform the textual columns
into numeric values. The columns CAEC (Frequency of food consumption between meals)
and CALC (Frequency of alcohol consumption) contained one of: “no”, “Sometimes”, “Fre-
quently”, or “Always” and were encoded numerically in increasing frequency order. The
binary features were encoded as 0 or 1. Finally, the obesity level contained one of “Insufi-
cient_Weight”, “Normal_Weight”, “Overweight_Level_I”, “Overweight_Level_II”, “Obe-
sity_Level_I”, “Obesity_Level_II”, or “Obesity_Level_III”; and was encoded numerically
in increasing order.

Communities and Crime

The original source of the dataset is Redmond and Baveja (2002), and the dataset was
downloaded from UC Irvine’s Machine Learning Repository (Markelle et al., 1998). The
target variable is the per-capita violent crime rate. A total of 101 regressor variables are
considered, including income data, racial statistics, average housing characteristics and de-
mographic data. The dataset contains data from 1993 counties.

In this dataset, there were many rows with missing values (94% of the observations).
However, the missing values were concentrated on a few columns. In particular, these missing
values were mostly in 22 of the columns. Since the dataset contains 127 variables, dropping
the columns is a better option. After dropping these columns, only one row has to be
dropped, to address the missing value in the column “OtherPerCap”(other racial group per
capita). Finally, the textual columns “state”, “county” and “communityname” were also
discarded.

4.1.1 Results

In this section, we present the results obtained by applying principal component regression
and partial least squares regression to the problems described in the previous section. The
experiments have been carried out using both unscaled and scaled data. Scaling has been
performed by subtracting the sample mean and dividing each variable by its sample standard
deviation. In all cases, the models were fitted on a fixed training partition, and evaluated
in a test partition (20% of the observations). Figure 4.2 displays the results obtained by the
four configurations as the number of components vary. To ensure that the differences in the
first components could be clearly seen, the number of components were limited to 25 even if
some datasets contained more regressor variables.

Analyzing the results, two clear patterns are observed: PLS outperforms PCA in the
first components, and the standardization of the variables generally yields better results.
Since both the variance (PCA’s criterion) and the covariance (PLS’s criterion) are affected
by scale changes, the impact of the standardization is expected. However, it is interesting
to note that, while in PLS the standardization led to better results in all the problems
investigated, this is not always the case for PCA. For example, in the case of the California
Housing problem, from four to seven components, PCA obtains better results when the
regressors are not scaled. This dataset combines variables with drastically different scales.
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Figure 4.2: PCA and PLS Regression R2 test scores (limited to 25 components)
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59



4. Empirical comparison of PCA and PLS Regression

Therefore, some features have a higher variance simply due to the scale. For example, the
population variable takes values in the thousands, and has a variance of the order of 106

while the average number of bedrooms takes values between zero and two, with a variance
of only 10−3. As a result, the selection of the PCA components is mostly determined by the
scale of the variables. In fact, if we sort the variables in order of decreasing variance, the
variable with the highest correlation with the target is the fifth variable, which matches the
number of components for which the test R2 score converges to its maximum value.

As we have seen, the performance of scaled PLS regression is, in general, better than
the other models considered. Typically, the vast majority of the variance can be explained
using the first two components. This contrasts with the evolution of the scores of PCA, in
which many more components must be considered to reach similar results. To highlight this
difference, Figure 4.3 compares the scores achieved by both methods considering the first
five components. On average, the first two components of PLS can explain 92.7% of the
variance that can be explained by the best linear model, while this metric drops to 49.5% in
the case of PCA.

To improve the accuracy of the predictors, we have considered the use of penalized
regression and of non-linear regression techniques. As discussed in Chapter 2, PLS regression
can be understood as a two-step process. The first step is the projection of the original data
onto a lower-dimensionality space. Then, a linear regression model is fitted by least squares.
This same separation holds true with PCA, since the difference between both methods lies
on how the original data is projected onto the lower-dimensionality space. Therefore, one
can combine these methods with any multivariate predictor by replacing the linear regression
of the second step with a different regression technique.

As regularization techniques, ridge, lasso and elastic-net regression were considered. The
performance of each of these methods, as well as linear regression (as the baseline) is plotted
in the left column of Figures 4.4 and 4.5 for all datasets. A key difference with linear
regression is that these methods have hyperparameters that have to be selected. To find
the optimum combination of hyperparameters for each number of components, a grid search
was performed. The combination of hyperparameters selected is the one that yields the best
cross validation score (with five folds) in the training dataset. For the sake of completeness,
the hyperparameter values considered are included in Table 4.2. The hyperparameters whose
values are not given in the tables are left to the default values in scikit-learn, which is the
library we used for these experiments.

Ridge and Lasso
Alpha 0.001, 0.01, 0.1, 1, 10, 100

Elastic-net
Alpha 0.001, 0.01, 0.1, 1, 10, 100

L1 ratio 0.001, 0.01, 0.1, 0.5, 0.7, 0.9

Table 4.2: Hyperparameters considered in regularized regressors
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Figure 4.4: PCA and PLS Regression R2 test scores
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Figure 4.5: PCA and PLS Regression R2 test scores
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4. Empirical comparison of PCA and PLS Regression

Furthermore, the number of components that produced the best cross validation score
on the training dataset (with any combination of hyperparameters) was also calculated. The
results are displayed in the first columns of Table 4.3, along with the test score of that
regressor refitted on the entire training partition.

When compared to the results obtained with linear regression, there were very minor
improvements on the Diabetes, and Cancer Registry datasets. However, in general, the
regularization did not improve the results. This is not surprising since one of the main uses
of regularization is to reduce overfitting. However, the dimensionality reduction step (PLS
or PCA) was probably effective at limiting the amount of overfitting. In fact, one can think
of dimensionality reduction as a regularization technique, as it limits the search space of the
coefficients. Therefore, considering additional regularization penalties in the regression step
may not be necessary.

Finally, we consider the use of non-linear predictors after the dimensionality reduction
step. In particular, we consider support vector machine (SVR), random forests (RF), and
neural networks (NN). As before, the best hyperparameters are selected using 5-fold cross-
validation. The hyperparameter values considered are including in Table 4.4. In the case
of the neural network, to avoid overfitting, early stopping was utilized, with a validation
partition of 10% and a patience of 20 epochs. That is to say, the training process is halted
if there is no improvement in the validation score during 20 epochs.

SVR
C 0.1, 1, 10, 100

gamma 1, 0.1, 0.001, 0.0001
kernel rbf, linear

epsilon 0.1, 0.01, 0.001

Random Forest
Max features all features, sqrt, log2

Number of estimators 1000

Neural Network
Hidden layer (5), (10), (20), (5,5), (10,10), (20,20)

Activation function logistic, linear, relu
Max epochs 1000

Batch size 100
Optimiser adam

Table 4.4: Hyperparameters considered in non-linear regressors

As we can see in Table 4.3, except for the Diabetes dataset, the best score is achieved by
a non-linear method. However, not all datasets present a significant improvement. We can
highlight the accuracy improvements from 0.66 to 0.74 in California Housing, from 0.85 to
0.94 in Life Expectancy and from 0.50 to 0.87 in Obesity. This shows that, even though the
dimensionality reduction technique is linear, the use of a non-linear predictor can improve the
results notably. The results in the table also highlight that, in many cases, PLS can obtain
equivalent results to PCA with fewer components. This is apparent when we compare the
number of components that yield in the best cross validation score. For example, in the
case of Diabetes, PCA reached its best result with 10 components, in contrast to only 3
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4.2. Functional regression with scalar response

for PLS. This same pattern repeats in the Cancer Registry (27 to 15), AIDS Clinical Trials
(16 to 2), and Communities and Crime (83 to 4). As we saw when comparing the results
with linear regression, both methods obtain very similar scores, but PCA usually needs many
more components. This is particularly beneficial for non-linear methods since it can decrease
notably the fitting time of complex regressors.

This same behavior can be observed in the plots in Figures 4.4 and 4.5. In particular,
the difference is clear in California Housing, Cancer Registry, and AIDS Clinical Trials,
where the results of PCA (dashed lines) stay notably below of PLS’s results for the first few
components. However, in most cases, the advantage of PLS over PCA is slightly lower than
when comparing linear regression results.

In conclusion, the experiments in this section show that PLS has a notable advantage
over PCA when few components are used. In no dataset had PCA a significant advantage
over PLS for any regression technique on any number of components. Moreover, we saw
how introducing non-linear regressors can lead to better predictive capabilities for the PLS
component even when considering only the first few components.

4.2 Functional regression with scalar response

In this section we carry out an empirical evaluation of PLS in functional regression problems.
As discussed in Chapter 2, the functional observations are discretized in a grid fine enough
so that the functional nature of the data is apparent. As an example, Figure 4.6 shows the
samples of one of the datasets considered, the Tecator dataset.
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Figure 4.6: Tecator dataset. Each trajectory represents the absorbance of a sample depend-
ing on the wave length.
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4. Empirical comparison of PCA and PLS Regression

Four datasets have been considered. In the following, each dataset is described, together
with any preprocessing steps that were performed. As a summary, Table 4.5 summarizes the
most relevant characteristics of each dataset.

Samples Grid size Source

Tecator 215 100 Tecator company, download: lib.stat.cmu.edu
Sugar content 268 3997 (Munck et al., 1998)
Octane 60 401 UIO Guided Wave Inc., (Segaert et al., 2024)
AEMET 73 365 AEMET, (Febrero-Bande & de la Fuente, 2012)

Table 4.5: Summary of functional datasets

Tecator

The tecator dataset contains the absorbance spectra of 215 meat samples, measured with a
Tecator Infratec Food and Feed Analyzer in the wavelength range 850− 1050 nm. The goal
is to predict the fat content of each sample utilizing the absorbance spectra. The dataset
was downloaded from http://lib.stat.cmu.edu/datasets/tecator, while the original source is
the Tecator company.

Aside from the original data, during the analysis of the Tecator dataset, the second
derivatives of the regressors are usually considered, as they contain most of the information
(Ferraty, 2006). Therefore, we have also considered the problem of predicting the fat content
from the second derivatives of the regressors.

Sugar content

This dataset contains the emission spectra of 268 samples of sugar solutions. The spectra
were measured in the range of 275 − 560 nm, at different seven different excitation wave-
lengths. As a preprocessing steps, the seven measurements for each sample have been con-
catenated, obtaining a single (functional) regressor. The target variable is the ash content,
which is an indicator of sugar quality. The data set was downloaded from https://jeffgold-
smith.com/IWAFDA/DataCode/Sugar.RDA, and its original source is Munck et al. (1998).

Octane

The Octane dataset is composed of the near infrared spectra of gasoline samples, with
wavelengths in the range 1102 − 1552 nm. The goal is to predict the octanes from the
spectra of each sample. This dataset was downloaded from CRAN, in particular, from the
package mrfDepth (Segaert et al., 2024). This dataset was originally provided by UOP
Guided Wave Inc., USA (Esbensen, 2002, p.221).
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4.2. Functional regression with scalar response

AEMET

The AEMET dataset contains the average of the daily temperature, precipitation, and wind
speed measured of 72 Spanish weather stations from 1980 to 2009. The goal in this case is to
predict the average yearly precipitation from the average daily temperatures. The original
source is the Meteorological State Agency of Spain (AEMET), while the data was downloaded
from the R packet fda.usc (Febrero-Bande & de la Fuente, 2012). As a preprocessing step, the
target variable has been transformed by applying a logarithm, with the aim of compensating
for differences in scale.

4.2.1 Results

In this section we present first the results obtained by applying linear regression to the
extracted PLS and PCA components. For functional data, in principle, there is no upper
limit on the number of components that can be extracted. However, in practice, the number
of components is limited by the number of discretization points in the grid. For this analysis,
we have selected an upper limit of 80 components in all datasets. This limit is well below
the number of discretization points in any of the problems, while being high enough to show
the evolution of the scores as more components are considered.

The results obtained are displayed in Figure 4.7. As in the multivariate setting, the
major advantage of PLS is the rate at which the performance increases within the first few
components. This is particularly apparent in the results obtained with the second derivatives
of Tecator and the Aemet dataset. Furthermore, in the Aemet dataset, the accuracy of PLS
drops when considering more than eight components. To check if this could be due to
overfitting, we have also included the R2 scores on the training partition in the right column
of Figure 4.7. We can see how PLS’s R2 score on the training partition already reaches 0.99
with the first eight components, and does not drop as more components are considered. In
contrast, the train R2 score for PCA with eight components is 0.9, and slowly increases as
more components are taken into account, only reaching 0.99 after including 34 components
or more. Therefore, the drop in the test scores of PLS seems to be caused by overfitting,
which is less surprising once we recall that this dataset has only 73 samples.

Following the same logic as in the previous section, we also considered the use of regular-
ization and non-linear predictors. The same hyperparameter grids included in Section 4.1 are
used for all regressors except for the neural network. Since the number of samples of these
datasets is very low, the runtime of all the algorithms is considerably faster, and we could
utilize LBFGS, instead of ADAM as the optimizer. LBFGS is a quasi-Newton optimization
method (Liu & Nocedal, 1989), that utilizes an approximation of the Hessian. Compared
to ADAM, since LBFGS also takes into account the curvature of the space, it can converge
faster in situations where ADAM struggles to converge. Moreover, in these experiments, no
major overfitting was observed and, therefore, it was not necessary to utilize early stopping.
The final hyperparameter considered are included in Table 4.6.
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Figure 4.7: R2 scores for functional PCA and PLS regression
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4.2. Functional regression with scalar response

Neural Network
Hidden layer (5), (10), (20), (5,5), (10,10), (20,20)

Alpha 0.0001, 0.001, 0.01, 0.1, 1, 10, 100
Activation function logistic, linear, relu

Max epochs 1000
Optimiser lbfgs

Table 4.6: Hyperparameters considered for the application of networks with functional re-
gressors

The results obtained considering non-linear regressors are plotted in Figure 4.8. As in the
previous section, the results are also presented in a tabular format in Table 4.7. Similarly to
the multivariate case, the utilization of regularized methods does not yield notable improve-
ments. The largest difference is obtained in the Sugar dataset, where elastic net achieved a
test scores of 0.764 and 0.739 for PCA and PLS, which correspond to improvements of 2%
and, 3% over linear regression respectively. This could be an indicator that this dataset is
prone to overfitting since the additional regularization step (after dimensionality reduction)
improves the results. However, the difference is very small, and we did not observe a decrease
of the test score as the number of components increases.

With the exception of the Octane dataset, the best PLS result is obtained when using
neural networks. Moreover, the combination of PCA and neural networks also obtains great
results. In particular, in the Tecator dataset, the best results increase from 0.95 with linear
regression to 0.99 with a neural network. This illustrates the effectiveness of combining linear
dimensionality reduction techniques, such as PCA or PLS, with non-linear predictors.

As in previous experiments, the best scores obtained by PLS and PCA are almost equal,
but PLS generally reaches the optimum value with fewer components. In the Tecator dataset,
PLS reached its maximum with 8 components, compared to 12 for PCA and, in the Sugar
dataset, 7 compared to 28. This same phenomenon can be observed in Figure 4.8, where
the plots show how the scores obtained by PLS tend to be above those of PCA. However,
if we compare the plots on the right and left column, we can see how the introduction of
non-linear methods decreases the differences between PCA and PLS when only the first few
components are considered. Clear examples of this are the Aemet dataset and the second
derivatives of the Tecator dataset. A possible explanation for this is that the capabilities of
non-linear methods to capture complex relationships might reduce the impact of the selection
of the dimensionality reduction technique.
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Figure 4.8: Non-linear methods
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4.2. Functional regression with scalar response
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4. Empirical comparison of PCA and PLS Regression

In summary, the experiments conducted on functional data showed that behavior of PLS
does not deviate from the patterns observed on multivariate data. In most cases, the best
scores obtained by PLS and PCA are similar. However, PLS converges to the optimum
faster. This is to be expected since PLS takes into account the response variable during
the dimensionality reduction step. Furthermore, the application of non-linear regression
methods on the components extracted by PLS generally leads to better predictions, with
neural networks being the most effective in the majority of datasets considered.
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Chapter 5

Conclusions and future work

In this master thesis, we have explored the application of PLS to regression problems both
with multivariate and with functional data. A generic formulation of PLS was given in which
the only requirement is that the regressor variables can be characterized as elements of a
Hilbert space. This formulation provides a unified framework to understand the relationships
between different PLS variants found in the literature, and show their equivalence. In order
to do so, we introduce PLS as an iterative process that builds a sequence of nested subspaces
of increasing dimension. Each subspace is generated by a basis, composed of elements in
the Hilbert space. At each iteration, PLS extends the basis, by incorporating the element
of the Hilbert space that maximizes the covariance with the target variable, subject to some
constraints. Depending on the constraints enforced, different PLS basis are obtained. The
orthogonal basis is the result of imposing pair-wise orthogonality with respect to the inner
product of the Hilbert space. The conjugate basis is obtained by enforcing orthogonality with
respect to the conjugate inner product defined under the metric induced by the inverse of the
covariance operator of the predictor variables. In both cases, the bases obtained span Krylov
subspaces of increasing order. As a result, a third basis can be identified: the Krylov basis,
containing the elements obtained by applying repeatedly the regressor covariance operator
onto the cross-covariance. While the Krylov basis is useful in theoretical contexts, the two
other basis correspond to two of the most widespread algorithms for PLS: NIPALS and
conjugate gradients. Both algorithms build the corresponding basis iteratively. However,
NIPALS exploits the properties of the orthogonal basis, while conjugate gradients relies on
the properties of the conjugate basis.

Additionally, the differences between partial least squares and ordinary least squares
regression was studied for multivariate data, and we concluded that this difference is largely
determined by the structure of the eigenvalues of the covariance operator. In particular,
the convergence of PLS to OLS can be related to a polynomial fitting problem, where the
degree of the polynomial is given by the number of components considered, and the points
to fit are given by the eigenvalues of the covariance operator. From this reformulation, an
upper bound on the differences between regression coefficients obtained by PLS and OLS
was derived, which depends only on the eigenvalue distribution of the covariance operator.
The conclusions of this analysis are that PLS is expected to be most effective when the
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5. Conclusions and future work

eigenvalues are not close to zero and appear tightly grouped in a few clusters. Moreover, if
there are only M distinct eigenvalues, it is sufficient to consider M PLS components.

Finally, the predictive capabilities of PLS regression are evaluated in a variety of prob-
lems, both functional and multivariate, and comparing its performance to principal com-
ponent regression (PCR). The experiments show that the performance of PLS regression is
comparable to that of PCR, but utilizing fewer components. Moreover, we also consider
combining PCA and PLS with non-linear regression techniques, with the goal of exploit-
ing more complex relationships between the regressors and the target variable. The results
show that the combination of PLS and neural networks can be very effective. The dimen-
sionality reduction step can significantly reduce the inputs of the regressor, simplifying and
accelerating the fitting process, while the neural networks are capable of capturing complex
relationships, greatly surpassing the predictive capabilities of linear methods in some cases.

A possible extension of this work would be to study in detail the impact of the eigenvalue
distribution of the regressor covariance operator on the predictive performance of PLS for
functional data. In the third chapter of this master thesis, we showed that the presence of
eigenvalues that are close to zero can reduce the effectiveness of PLS for multivariate regres-
sors. However, in the functional setting, the eigenvalues have an accumulation point at zero.
One investigative line would be to study the performance of PLS when the data is projected
onto the space generated by the eigenvectors of the eigenvalues above certain threshold. That
is to say, when the information associated with small eigenvalues is discarded. This transfor-
mation should accelerate the convergence of PLS. However, it is unclear if this improvement
would compensate the discarded information.

Alternatively, different optimization goals could be introduced in the definition of PLS
to consider non-linear relationships between the regressors and the target. As an example,
Kernel PLS (Rosipal & Trejo, 2001; Yifeng, Jian, & Long, 2006), has already been explored
as an alternative to model non-linear relationships. By changing the maximization of the
covariance to some other criterion that involves both target and regressor, and that considers
non-linear relationships, it could be possible to introduce new variants of PLS.

Furthermore, the approach of the second chapter could be applied to other techniques
in the PLS family such as SIMPLS (de Jong, 1993) or PLS-SVD (Wegelin, 2000). By
reconsidering these methods utilizing the framework introduced in this work, it is likely that
their relationship with the PLS bases described in Chapter 2 could be clarified. Moreover,
in doing so, these methods could be generalized to consider regressors in Hilbert spaces.

To conclude, in this work we explored a unified approach that ties the most widely-spread
functional PLS formulations with their multivariate counterparts by abstracting them to
consider regressors contained in a Hilbert space. Furthermore, we clarified the relationship
between the different PLS basis, and the algorithms that utilize them, along with the prop-
erties that they exploit. Additionally, we introduced a bound for the difference between the
PLS and OLS approximations to the regression coefficients for multivariate regressors that
only depends on the eigenvalue structure of the regressor covariance operator. To close this
exploration of PLS, its performance was measured in functional and multivariate real-world
problems, showing its effectiveness as a dimensionality reduction technique, and the potential
of combining it with non-linear regressors.
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